Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ from langchain.schema import Document
|
|
11 |
from sentence_transformers import SentenceTransformer,util
|
12 |
from streamlit_image_select import image_select
|
13 |
import os
|
|
|
14 |
import PyPDF2
|
15 |
import requests
|
16 |
from streamlit_navigation_bar import st_navbar
|
@@ -32,7 +33,7 @@ def consume_llm_api(prompt):
|
|
32 |
"""
|
33 |
Sends a prompt to the LLM API and processes the streamed response.
|
34 |
"""
|
35 |
-
url = "https://
|
36 |
headers = {"Content-Type": "application/json"}
|
37 |
payload = {"prompt": prompt}
|
38 |
|
@@ -477,7 +478,39 @@ with column1:
|
|
477 |
negative_prompt="the black masked area"
|
478 |
|
479 |
# run=st.button("run_experiment")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
if bg_doc and prompt:
|
482 |
query_embedding = model.encode([prompt])
|
483 |
retrieved_chunks = max([(util.cos_sim(match[0],query_embedding),match[-1])for match in vector_store])[-1]
|
|
|
11 |
from sentence_transformers import SentenceTransformer,util
|
12 |
from streamlit_image_select import image_select
|
13 |
import os
|
14 |
+
import fitz
|
15 |
import PyPDF2
|
16 |
import requests
|
17 |
from streamlit_navigation_bar import st_navbar
|
|
|
33 |
"""
|
34 |
Sends a prompt to the LLM API and processes the streamed response.
|
35 |
"""
|
36 |
+
url = "https://wise-eagles-send.loca.lt/api/llm-response"
|
37 |
headers = {"Content-Type": "application/json"}
|
38 |
payload = {"prompt": prompt}
|
39 |
|
|
|
478 |
negative_prompt="the black masked area"
|
479 |
|
480 |
# run=st.button("run_experiment")
|
481 |
+
if bg_doc:
|
482 |
+
if len(dictionary['every_prompt_with_val'])==0:
|
483 |
+
query_embedding = model.encode(["something"])
|
484 |
+
else:
|
485 |
+
|
486 |
+
query_embedding = model.encode([dictionary['every_prompt_with_val'][-1][0]])
|
487 |
+
retrieved_chunks = max([(util.cos_sim(match[0],query_embedding),match[-1])for match in vector_store])[-1]
|
488 |
|
489 |
+
|
490 |
+
|
491 |
+
with implementation:
|
492 |
+
|
493 |
+
text_lookup=retrieved_chunks
|
494 |
+
pages=[]
|
495 |
+
with fitz.open("temp.pdf") as doc:
|
496 |
+
page_number = st.sidebar.number_input(
|
497 |
+
"Page number", min_value=1, max_value=doc.page_count, value=1, step=1
|
498 |
+
|
499 |
+
|
500 |
+
)
|
501 |
+
for page_no in range(doc.page_count):
|
502 |
+
pages.append(doc.load_page(page_no - 1))
|
503 |
+
|
504 |
+
# areas = pages[page_number-1].search_for(text_lookup)
|
505 |
+
with st.container(height=int(screen_height//1.8)):
|
506 |
+
for pg_no in pages[::-1]:
|
507 |
+
areas = pg_no.search_for(text_lookup)
|
508 |
+
for area in areas:
|
509 |
+
pg_no.add_rect_annot(area)
|
510 |
+
|
511 |
+
pix = pg_no.get_pixmap(dpi=100).tobytes()
|
512 |
+
st.image(pix,use_column_width=True)
|
513 |
+
|
514 |
if bg_doc and prompt:
|
515 |
query_embedding = model.encode([prompt])
|
516 |
retrieved_chunks = max([(util.cos_sim(match[0],query_embedding),match[-1])for match in vector_store])[-1]
|