Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -39,54 +39,54 @@ from streamlit_pdf_viewer import pdf_viewer
|
|
39 |
|
40 |
|
41 |
|
42 |
-
def consume_llm_api(prompt):
|
43 |
-
"""
|
44 |
-
Sends a prompt to the LLM API and processes the streamed response.
|
45 |
-
"""
|
46 |
-
url = "https://8417-201-238-124-65.ngrok-free.app/api/llm-response"
|
47 |
-
headers = {"Content-Type": "application/json"}
|
48 |
-
payload = {"prompt": prompt}
|
49 |
-
|
50 |
-
try:
|
51 |
-
print("Sending prompt to the LLM API...")
|
52 |
-
with requests.post(url, json=payload, headers=headers, stream=True) as response:
|
53 |
-
response.raise_for_status()
|
54 |
-
print("Response from LLM API:\n")
|
55 |
-
for line in response:
|
56 |
-
yield(line.decode('utf-8'))
|
57 |
-
# print(type(response))
|
58 |
-
# yield(response)
|
59 |
-
except requests.RequestException as e:
|
60 |
-
print(f"Error consuming API: {e}")
|
61 |
-
except Exception as e:
|
62 |
-
print(f"Unexpected error: {e}")
|
63 |
# def consume_llm_api(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
@st.cache_resource
|
91 |
def encoding_model():
|
92 |
"""
|
@@ -351,7 +351,7 @@ with column2:
|
|
351 |
for index,prompts_ in enumerate(dictionary['every_prompt_with_val'][::-1]):
|
352 |
if prompts_[-1]=="@working":
|
353 |
if index==0:
|
354 |
-
|
355 |
data_need=""
|
356 |
while(len(data_need)==0):
|
357 |
if len(prompts_)==3:
|
|
|
39 |
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# def consume_llm_api(prompt):
|
43 |
+
# """
|
44 |
+
# Sends a prompt to the LLM API and processes the streamed response.
|
45 |
+
# """
|
46 |
+
# url = "https://8417-201-238-124-65.ngrok-free.app/api/llm-response"
|
47 |
+
# headers = {"Content-Type": "application/json"}
|
48 |
+
# payload = {"prompt": prompt}
|
49 |
+
|
50 |
+
# try:
|
51 |
+
# print("Sending prompt to the LLM API...")
|
52 |
+
# with requests.post(url, json=payload, headers=headers, stream=True) as response:
|
53 |
+
# response.raise_for_status()
|
54 |
+
# print("Response from LLM API:\n")
|
55 |
+
# for line in response:
|
56 |
+
# yield(line.decode('utf-8'))
|
57 |
+
# # print(type(response))
|
58 |
+
# # yield(response)
|
59 |
+
# except requests.RequestException as e:
|
60 |
+
# print(f"Error consuming API: {e}")
|
61 |
+
# except Exception as e:
|
62 |
+
# print(f"Unexpected error: {e}")
|
63 |
+
def consume_llm_api(prompt):
|
64 |
|
65 |
+
client = Groq(
|
66 |
+
api_key="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"
|
67 |
+
)
|
68 |
|
69 |
+
completion = client.chat.completions.create(
|
70 |
|
71 |
+
model="llama-3.3-70b-versatile",
|
72 |
+
messages=[
|
73 |
+
|
74 |
+
{
|
75 |
+
"role": "system",
|
76 |
+
"content": prompt
|
77 |
+
},
|
78 |
+
],
|
79 |
+
|
80 |
+
temperature=1,
|
81 |
+
# max_completion_tokens=1024,
|
82 |
+
top_p=1,
|
83 |
+
stream=True,
|
84 |
+
stop=None,
|
85 |
+
)
|
86 |
+
|
87 |
+
for chunk in completion:
|
88 |
+
if chunk.choices[0].delta.content:
|
89 |
+
yield chunk.choices[0].delta.content
|
90 |
@st.cache_resource
|
91 |
def encoding_model():
|
92 |
"""
|
|
|
351 |
for index,prompts_ in enumerate(dictionary['every_prompt_with_val'][::-1]):
|
352 |
if prompts_[-1]=="@working":
|
353 |
if index==0:
|
354 |
+
st.write(prompts_[0].split(send_prompt())[-1].upper() if send_prompt() in prompts_[0] else prompts_[0].upper())
|
355 |
data_need=""
|
356 |
while(len(data_need)==0):
|
357 |
if len(prompts_)==3:
|