Spaces:
Runtime error
Runtime error
import openai | |
import os | |
openai.api_key=os.getenv("OPENAI_API_KEY") | |
from dotenv import load_dotenv | |
load_dotenv() | |
from flask import Flask, jsonify, render_template, request | |
import requests, json | |
import PyPDF2 | |
# import nltk | |
# nltk.download("punkt") | |
import shutil | |
from werkzeug.utils import secure_filename | |
from werkzeug.datastructures import FileStorage | |
import nltk | |
from datetime import datetime | |
import openai | |
from langchain.llms import OpenAI, Replicate | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.embeddings import HuggingFaceBgeEmbeddings | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from langchain.document_loaders import SeleniumURLLoader, PyPDFLoader | |
from langchain.docstore.document import Document | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import VectorDBQA | |
from langchain.document_loaders import UnstructuredFileLoader, TextLoader | |
from langchain import PromptTemplate | |
from langchain.chains import RetrievalQA | |
from langchain.memory import ConversationBufferWindowMemory | |
from transformers import LlamaTokenizer, AutoTokenizer | |
import warnings | |
warnings.filterwarnings("ignore") | |
#app = Flask(__name__) | |
app = Flask(__name__, template_folder="./") | |
# Create a directory in a known location to save files to. | |
uploads_dir = os.path.join(app.root_path,'static', 'uploads') | |
os.makedirs(uploads_dir, exist_ok=True) | |
defaultEmbeddingModelID = 3 | |
defaultLLMID=0 | |
def pretty_print_docs(docs): | |
print(f"\n{'-' * 100}\n".join([f"Document {i + 1}:\n\n" + "Document Length>>>" + str( | |
len(d.page_content)) + "\n\nDocument Source>>> " + d.metadata['source'] + "\n\nContent>>> " + d.page_content for | |
i, d in enumerate(docs)])) | |
def getEmbeddingModel(embeddingId): | |
if (embeddingId == 1): | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
elif (embeddingId == 2): | |
model_name = "hkunlp/instructor-large" | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': True} | |
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs) | |
elif (embeddingId == 3): | |
model_name = "BAAI/bge-large-en-v1.5" | |
model_kwargs = {'device': 'cuda'} | |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity | |
model = HuggingFaceBgeEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs) | |
else: | |
embeddings = OpenAIEmbeddings() | |
return OpenAIEmbeddings() | |
def getLLMModel(LLMID): | |
# else: | |
# llm = LlamaCpp( | |
if LLMID == 1: | |
# llm = Replicate( | |
# model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5", | |
# model_kwargs={"temperature": 0.2,"max_length": 2500}) | |
llm = Replicate( | |
model="meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d", | |
model_kwargs={"temperature": 0.2,"max_new_tokens":2500}) | |
print("LLAMA2 13B LLM Selected") | |
elif LLMID == 2: | |
# llm = Replicate( | |
# model="replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf", | |
# model_kwargs={"temperature": 0.2,"max_length": 2500}) | |
llm = Replicate( | |
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3", | |
model_kwargs={"temperature": 0.2,"max_new_tokens":2500}) | |
print("LLAMA2 70B LLM Selected") | |
elif LLMID == 3: | |
llm = Replicate(model="meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e", | |
model_kwargs={"temperature": 0.2,"max_new_tokens":2500}) | |
print("LLAMA2 7B Chat LLM Selected") | |
elif LLMID == 4: | |
llm = Replicate( | |
model="a16z-infra/mistral-7b-instruct-v0.1:83b6a56e7c828e667f21fd596c338fd4f0039b46bcfa18d973e8e70e455fda70", | |
model_kwargs={"temperature": 0.2,"max_new_tokens":2500}) | |
print("Mistral AI LLM Selected") | |
else: | |
llm = OpenAI(model_name="gpt-3.5-turbo-0125",temperature=0.0) | |
print("Open AI LLM Selected") | |
return llm | |
def clearKBUploadDirectory(uploads_dir): | |
for filename in os.listdir(uploads_dir): | |
file_path = os.path.join(uploads_dir, filename) | |
print("Clearing Doc Directory. Trying to delete" + file_path) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
except Exception as e: | |
print('Failed to delete %s. Reason: %s' % (file_path, e)) | |
def PDFChunkerWithSeparator(filepath, separator): | |
content = "" | |
if filepath.endswith(".pdf"): | |
# creating a pdf reader object | |
reader = PyPDF2.PdfReader(filepath) | |
# print the number of pages in pdf file | |
print(len(reader.pages)) | |
for page in reader.pages: | |
content += page.extract_text() | |
elif filepath.endswith(".txt"): | |
with open(filepath) as f: | |
lines = f.readlines() | |
f.close() | |
for line in lines: | |
content+=line | |
splitted_content_list = content.split(separator) | |
doclist = [] | |
for splitted_content in splitted_content_list: | |
new_doc = Document(page_content=splitted_content, metadata={"source": filepath}) | |
# print(type(new_doc)) | |
doclist.append(new_doc) | |
if len(doclist)>3: | |
print(doclist[len(doclist) - 3]) | |
return doclist | |
def loadKB(fileprovided, urlProvided, uploads_dir, request): | |
documents = [] | |
global tokenizer | |
BASE_MODEL = "LLAMA-TOKENIZER" | |
savedModelPath = "./model/" + BASE_MODEL | |
#tokenizer = LlamaTokenizer.from_pretrained(savedModelPath) | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") | |
separator = "</Q>" | |
if fileprovided: | |
# Delete Files | |
clearKBUploadDirectory(uploads_dir) | |
# Read and Embed New Files provided | |
for file in request.files.getlist('files[]'): | |
print("File Received>>>" + file.filename) | |
file.save(os.path.join(uploads_dir, secure_filename(file.filename))) | |
#loader = PyPDFLoader(os.path.join(uploads_dir, secure_filename(file.filename))) | |
#documents.extend(loader.load()) | |
documents.extend(PDFChunkerWithSeparator(os.path.join(uploads_dir, secure_filename(file.filename)),separator)) | |
else: | |
#loader = TextLoader('Jio.txt') | |
#documents.extend(loader.load()) | |
documents.extend(PDFChunkerWithSeparator('JTest.txt',separator)) | |
if urlProvided: | |
weburl = request.form.getlist('weburl') | |
print(weburl) | |
urlList = weburl[0].split(';') | |
print(urlList) | |
print("Selenium Started", datetime.now().strftime("%H:%M:%S")) | |
# urlLoader=RecursiveUrlLoader(urlList[0]) | |
urlLoader = SeleniumURLLoader(urlList) | |
print("Selenium Completed", datetime.now().strftime("%H:%M:%S")) | |
documents.extend(urlLoader.load()) | |
print("inside selenium loader:") | |
print(documents) | |
return documents | |
def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llmID): | |
chain = RetrievalQA.from_chain_type( | |
llm=getLLMModel(llmID), | |
chain_type='stuff', | |
retriever=getRetriever(vectordb), | |
#retriever=vectordb.as_retriever(), | |
memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question"), | |
verbose=False, | |
chain_type_kwargs={ | |
"verbose": False, | |
"prompt": createPrompt(customerName, customerDistrict, custDetailsPresent), | |
"memory": ConversationBufferWindowMemory( | |
k=3, | |
memory_key="history", | |
input_key="question"), | |
} | |
) | |
return chain | |
def getRetriever(vectordb): | |
return vectordb.as_retriever(search_type="mmr", search_kwargs={'k': 2}) | |
def createVectorDB(documents,embeddingModelID): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150) | |
texts = [] | |
for document in documents: | |
tokenized_input = tokenizer.tokenize(document.page_content) | |
print("Token Count::::::::::" + str(len(tokenized_input))) | |
if (len(tokenized_input) > 1000): | |
print("Splitting Content using RTS") | |
splitted_doc = text_splitter.split_documents([document]) | |
texts.extend(splitted_doc) | |
# for text in texts: | |
# print("splitted content:"+str(len(text.page_content))) | |
# print(text.page_content) | |
elif (len(tokenized_input) < 1000 and len(tokenized_input) > 1): | |
texts.append(document) | |
# texts = text_splitter.split_documents(documents) | |
print("All chunk List START ***********************\n\n") | |
pretty_print_docs(texts) | |
print("All chunk List END ***********************\n\n") | |
embeddings = getEmbeddingModel(embeddingModelID) | |
print("Embedding Started >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S")) | |
vectordb = Chroma.from_documents(texts, embeddings, collection_metadata={"hnsw:space": "cosine"}) | |
print("Vector Store Creation Completed*********************************\n\n") | |
return vectordb | |
# texts = text_splitter.split_documents(documents) | |
# print("All chunk List START ***********************\n\n") | |
# pretty_print_docs(texts) | |
# print("All chunk List END ***********************\n\n") | |
# embeddings = getEmbeddingModel(0) | |
# vectordb = Chroma.from_documents(texts, embeddings) | |
# return vectordb | |
def createPrompt(cName, cCity, custDetailsPresent): | |
cProfile = "Customer's Name is " + cName + "\nCustomer's lives in or customer's Resident State or Customer's place is " + cCity + "\n" | |
print(cProfile) | |
template1 = """You role is of a Professional Customer Support Executive and your name is Jio AIAssist. | |
You are talking to the below customer whose information is provided in block delimited by <cp></cp>. | |
Use the following customer related information (delimited by <cp></cp>) and context (delimited by <ctx></ctx>) to answer the question at the end by thinking step by step alongwith reaonsing steps: | |
If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
Use the customer information to replace entities in the question before answering\n | |
\n""" | |
template2 = """ | |
<ctx> | |
{context} | |
</ctx> | |
<hs> | |
{history} | |
</hs> | |
Question: {question} | |
Answer: """ | |
prompt_template = template1 + "<cp>\n" + cProfile + "\n</cp>\n" + template2 | |
PROMPT = PromptTemplate(template=prompt_template, input_variables=["history", "context", "question"]) | |
return PROMPT | |
vectordb = createVectorDB(loadKB(False, False, uploads_dir, None),defaultEmbeddingModelID) | |
def test(): | |
return "Docker hello" | |
def KBUpload(): | |
return render_template("KBTrain.html") | |
def aiassist(): | |
return render_template("index.html") | |
def aisearch(): | |
return render_template("aisearch.html") | |
def process_json(): | |
print(f"\n{'*' * 100}\n") | |
print("Request Received >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S")) | |
content_type = request.headers.get('Content-Type') | |
if content_type == 'application/json': | |
requestQuery = request.get_json() | |
print(type(requestQuery)) | |
custDetailsPresent = False | |
customerName = "" | |
customerDistrict = "" | |
if "custDetails" in requestQuery: | |
custDetailsPresent = True | |
customerName = requestQuery['custDetails']['cName'] | |
customerDistrict = requestQuery['custDetails']['cDistrict'] | |
selectedLLMID=defaultLLMID | |
if "llmID" in requestQuery: | |
selectedLLMID=(int) (requestQuery['llmID']) | |
print("chain initiation") | |
chainRAG = getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,selectedLLMID) | |
print("chain created") | |
suggestionArray = [] | |
searchResultArray = [] | |
for index, query in enumerate(requestQuery['message']): | |
# message = answering(query) | |
relevantDoc = vectordb.similarity_search_with_score(query, distance_metric="cos", k=3) | |
print("Printing Retriever Docs") | |
for doc in getRetriever(vectordb).get_relevant_documents(query): | |
searchResult = {} | |
print(f"\n{'-' * 100}\n") | |
searchResult['documentSource'] = doc.metadata['source'] | |
searchResult['pageContent'] = doc.page_content | |
print(doc) | |
print("Document Source>>>>>> " + searchResult['documentSource'] + "\n\n") | |
print("Page Content>>>>>> " + searchResult['pageContent'] + "\n\n") | |
print(f"\n{'-' * 100}\n") | |
searchResultArray.append(searchResult) | |
print("Printing Retriever Docs Ended") | |
print("Chain Run Started >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S")) | |
message = chainRAG.run({"query": query}) | |
print("Chain Run Completed >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S")) | |
print("query:", query) | |
print("Response:", message) | |
if "I don't know" in message: | |
message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?" | |
responseJSON = {"message": message, "id": index} | |
suggestionArray.append(responseJSON) | |
print("Response Sent >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S")) | |
return jsonify(suggestions=suggestionArray, searchResult=searchResultArray) | |
else: | |
return 'Content-Type not supported!' | |
def file_Upload(): | |
fileprovided = not request.files.getlist('files[]')[0].filename == '' | |
urlProvided = not request.form.getlist('weburl')[0] == '' | |
embeddingModelProvided = not request.form.getlist('embeddingModelID')[0] == '' | |
print("*******") | |
print("File Provided:" + str(fileprovided)) | |
print("URL Provided:" + str(urlProvided)) | |
print("Embedding Model Provided:" + str(embeddingModelProvided)) | |
print("*******") | |
print(uploads_dir) | |
documents = loadKB(fileprovided, urlProvided, uploads_dir, request) | |
embeddingModelID = defaultEmbeddingModelID | |
if embeddingModelProvided: | |
embeddingModelID = int(request.form.getlist('embeddingModelID')[0]) | |
global vectordb | |
vectordb = createVectorDB(documents, embeddingModelID) | |
#vectordb=createVectorDB(documents) | |
return render_template("aisearch.html") | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860))) | |