Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,144 +1,242 @@
|
|
1 |
import openai
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
from langchain.vectorstores import Chroma
|
9 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
-
from langchain.llms import OpenAI
|
11 |
-
from langchain.chains import RetrievalQA
|
12 |
-
from langchain.chains import VectorDBQA
|
13 |
-
from langchain.document_loaders import TextLoader, WebBaseLoader, SeleniumURLLoader
|
14 |
-
from langchain.document_loaders import UnstructuredFileLoader
|
15 |
from flask import Flask, jsonify, render_template, request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
from werkzeug.utils import secure_filename
|
17 |
-
from werkzeug.datastructures import
|
|
|
18 |
import nltk
|
19 |
-
nltk.download("punkt")
|
20 |
-
import warnings
|
21 |
-
warnings.filterwarnings("ignore")
|
22 |
|
|
|
23 |
|
|
|
|
|
24 |
|
25 |
-
|
|
|
26 |
|
|
|
27 |
|
28 |
-
import
|
29 |
-
import
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
37 |
-
texts = text_splitter.split_documents(documents)
|
38 |
-
embeddings = OpenAIEmbeddings()
|
39 |
-
vectordb = Chroma.from_documents(texts,embeddings)
|
40 |
-
chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0.0),chain_type="stuff", retriever=vectordb.as_retriever(search_type="mmr"),return_source_documents=True)
|
41 |
|
|
|
42 |
|
43 |
app = flask.Flask(__name__, template_folder="./")
|
|
|
44 |
# Create a directory in a known location to save files to.
|
45 |
uploads_dir = os.path.join(app.root_path,'static', 'uploads')
|
|
|
46 |
os.makedirs(uploads_dir, exist_ok=True)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
@app.route('/
|
50 |
-
def
|
51 |
-
return
|
52 |
|
53 |
-
@app.route('/
|
54 |
def process_json():
|
|
|
|
|
55 |
content_type = request.headers.get('Content-Type')
|
56 |
if (content_type == 'application/json'):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
else:
|
66 |
return 'Content-Type not supported!'
|
67 |
|
68 |
-
|
69 |
-
@app.route('/file_upload',methods=['POST'])
|
70 |
def file_Upload():
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
urlList=weburl[0].split(';')
|
108 |
-
print(urlList)
|
109 |
-
urlLoader=SeleniumURLLoader(urlList)
|
110 |
-
documents.extend(urlLoader.load())
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
print(uploads_dir)
|
115 |
-
global chain;
|
116 |
-
|
117 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
118 |
-
texts = text_splitter.split_documents(documents)
|
119 |
-
|
120 |
-
print("All chunk List START ***********************\n\n")
|
121 |
-
pretty_print_docs(texts)
|
122 |
-
print("All chunk List END ***********************\n\n")
|
123 |
-
|
124 |
-
embeddings = OpenAIEmbeddings()
|
125 |
-
vectordb = Chroma.from_documents(texts,embeddings)
|
126 |
-
chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0.0),chain_type="stuff", retriever=vectordb.as_retriever(search_type="mmr"),return_source_documents=True)
|
127 |
-
|
128 |
-
return render_template("index.html")
|
129 |
-
|
130 |
-
@app.route('/')
|
131 |
-
def KBUpload():
|
132 |
-
return render_template("KBTrain.html")
|
133 |
|
134 |
-
@app.route('/aiassist')
|
135 |
-
def aiassist():
|
136 |
-
return render_template("index.html")
|
137 |
|
138 |
def pretty_print_docs(docs):
|
139 |
-
print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + "Document
|
|
|
|
|
140 |
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
if __name__ == '__main__':
|
144 |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|
|
|
|
1 |
import openai
|
2 |
+
|
3 |
+
openai.api_key=os.getenv("OPENAI_API_KEY")
|
4 |
+
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
load_dotenv()
|
7 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from flask import Flask, jsonify, render_template, request
|
9 |
+
import requests, json
|
10 |
+
|
11 |
+
# import nltk
|
12 |
+
# nltk.download("punkt")
|
13 |
+
|
14 |
+
import os
|
15 |
+
import shutil
|
16 |
from werkzeug.utils import secure_filename
|
17 |
+
from werkzeug.datastructures import FileStorage
|
18 |
+
|
19 |
import nltk
|
|
|
|
|
|
|
20 |
|
21 |
+
from datetime import datetime
|
22 |
|
23 |
+
import openai
|
24 |
+
from langchain.llms import OpenAI
|
25 |
|
26 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
27 |
+
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
28 |
|
29 |
+
from langchain.document_loaders import SeleniumURLLoader, PyPDFLoader
|
30 |
|
31 |
+
from langchain.vectorstores import Chroma
|
32 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
33 |
+
|
34 |
+
from langchain.chains import VectorDBQA
|
35 |
+
|
36 |
+
from langchain.document_loaders import UnstructuredFileLoader
|
37 |
+
from langchain import PromptTemplate
|
38 |
+
|
39 |
+
from langchain.chains import RetrievalQA
|
40 |
+
from langchain.memory import ConversationBufferWindowMemory
|
41 |
|
42 |
+
import warnings
|
43 |
+
|
44 |
+
warnings.filterwarnings("ignore")
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
#app = Flask(__name__)
|
48 |
|
49 |
app = flask.Flask(__name__, template_folder="./")
|
50 |
+
|
51 |
# Create a directory in a known location to save files to.
|
52 |
uploads_dir = os.path.join(app.root_path,'static', 'uploads')
|
53 |
+
|
54 |
os.makedirs(uploads_dir, exist_ok=True)
|
55 |
|
56 |
+
vectordb = createVectorDB(loadKB(False, False, uploads_dir, None))
|
57 |
+
|
58 |
+
@app.route('/', methods=['GET'])
|
59 |
+
def test():
|
60 |
+
return "Docker hello"
|
61 |
+
|
62 |
+
@app.route('/KBUploader')
|
63 |
+
def KBUpload():
|
64 |
+
return render_template("FileUpload.html")
|
65 |
|
66 |
+
@app.route('/aiassist')
|
67 |
+
def aiassist():
|
68 |
+
return render_template("AIAssist.html")
|
69 |
|
70 |
+
@app.route('/agent/chat/suggestion', methods=['POST'])
|
71 |
def process_json():
|
72 |
+
print(f"\n{'*' * 100}\n")
|
73 |
+
print("Request Received >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S"))
|
74 |
content_type = request.headers.get('Content-Type')
|
75 |
if (content_type == 'application/json'):
|
76 |
+
requestQuery = request.get_json()
|
77 |
+
print(type(requestQuery))
|
78 |
+
custDetailsPresent=False
|
79 |
+
customerName=""
|
80 |
+
customerDistrict=""
|
81 |
+
if("custDetails" in requestQuery):
|
82 |
+
custDetailsPresent = True
|
83 |
+
customerName=requestQuery['custDetails']['cName']
|
84 |
+
customerDistrict=requestQuery['custDetails']['cDistrict']
|
85 |
+
|
86 |
+
print("chain initiation")
|
87 |
+
chainRAG=getRAGChain(customerName, customerDistrict, custDetailsPresent,vectordb)
|
88 |
+
print("chain created")
|
89 |
+
suggestionArray = []
|
90 |
+
|
91 |
+
for index, query in enumerate(requestQuery['message']):
|
92 |
+
#message = answering(query)
|
93 |
+
relevantDoc = vectordb.similarity_search_with_score(query)
|
94 |
+
for doc in relevantDoc:
|
95 |
+
print(f"\n{'-' * 100}\n")
|
96 |
+
print("Document Source>>>>>> " + doc[len(doc) - 2].metadata['source'] + "\n\n")
|
97 |
+
print("Page Content>>>>>> " + doc[len(doc) - 2].page_content + "\n\n")
|
98 |
+
print("Similarity Score>>>> " + str(doc[len(doc) - 1]))
|
99 |
+
print(f"\n{'-' * 100}\n")
|
100 |
+
message = chainRAG.run({"query": query})
|
101 |
+
print("query:",query)
|
102 |
+
print("Response:", message)
|
103 |
+
if "I don't know" in message:
|
104 |
+
message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?"
|
105 |
+
responseJSON={"message":message,"id":index}
|
106 |
+
suggestionArray.append(responseJSON)
|
107 |
+
return jsonify(suggestions=suggestionArray)
|
108 |
else:
|
109 |
return 'Content-Type not supported!'
|
110 |
|
111 |
+
@app.route('/file_upload', methods=['POST'])
|
|
|
112 |
def file_Upload():
|
113 |
+
fileprovided = not request.files.getlist('files[]')[0].filename == ''
|
114 |
+
urlProvided = not request.form.getlist('weburl')[0] == ''
|
115 |
+
print("*******")
|
116 |
+
print("File Provided:" + str(fileprovided))
|
117 |
+
print("URL Provided:" + str(urlProvided))
|
118 |
+
print("*******")
|
119 |
+
|
120 |
+
print(uploads_dir)
|
121 |
+
documents = loadKB(fileprovided, urlProvided, uploads_dir, request)
|
122 |
+
vectordb=createVectorDB(documents)
|
123 |
+
return render_template("AIAssist.html")
|
124 |
+
|
125 |
+
def createPrompt(cName, cCity, custDetailsPresent):
|
126 |
+
cProfile = "Customer's Name is " + cName + "\nCustomer's lives in or customer's Resident State or Customer's place is " + cCity + "\n"
|
127 |
+
print(cProfile)
|
128 |
+
|
129 |
+
template1 = """You role is of a Professional Customer Support Executive and your name is Jio AIAssist.
|
130 |
+
You are talking to the below customer whose information is provided in block delimited by <cp></cp>.
|
131 |
+
Use the following customer related information (delimited by <cp></cp>) and context (delimited by <ctx></ctx>) to answer the question at the end by thinking step by step alongwith reaonsing steps:
|
132 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
133 |
+
Use the customer information to replace entities in the question before answering\n
|
134 |
+
\n"""
|
135 |
+
|
136 |
+
template2 = """
|
137 |
+
<ctx>
|
138 |
+
{context}
|
139 |
+
</ctx>
|
140 |
+
<hs>
|
141 |
+
{history}
|
142 |
+
</hs>
|
143 |
+
Question: {question}
|
144 |
+
Answer: """
|
145 |
+
|
146 |
+
prompt_template = template1 + "<cp>\n" + cProfile + "\n</cp>\n" + template2
|
147 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["history", "context", "question"])
|
148 |
+
return PROMPT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
|
|
|
|
|
|
150 |
|
151 |
def pretty_print_docs(docs):
|
152 |
+
print(f"\n{'-' * 100}\n".join([f"Document {i + 1}:\n\n" + "Document Length>>>" + str(
|
153 |
+
len(d.page_content)) + "\n\nDocument Source>>> " + d.metadata['source'] + "\n\nContent>>> " + d.page_content for
|
154 |
+
i, d in enumerate(docs)]))
|
155 |
|
156 |
|
157 |
+
def getEmbeddingModel(embeddingId):
|
158 |
+
if (embeddingId == 1):
|
159 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
160 |
+
else:
|
161 |
+
embeddings = OpenAIEmbeddings()
|
162 |
+
return embeddings
|
163 |
+
|
164 |
+
|
165 |
+
def getLLMModel(LLMID):
|
166 |
+
llm = OpenAI(temperature=0.0)
|
167 |
+
return llm
|
168 |
+
|
169 |
+
|
170 |
+
def clearKBUploadDirectory(uploads_dir):
|
171 |
+
for filename in os.listdir(uploads_dir):
|
172 |
+
file_path = os.path.join(uploads_dir, filename)
|
173 |
+
print("Clearing Doc Directory. Trying to delete" + file_path)
|
174 |
+
try:
|
175 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
176 |
+
os.unlink(file_path)
|
177 |
+
elif os.path.isdir(file_path):
|
178 |
+
shutil.rmtree(file_path)
|
179 |
+
except Exception as e:
|
180 |
+
print('Failed to delete %s. Reason: %s' % (file_path, e))
|
181 |
+
|
182 |
+
|
183 |
+
def loadKB(fileprovided, urlProvided, uploads_dir, request):
|
184 |
+
documents = []
|
185 |
+
if fileprovided:
|
186 |
+
# Delete Files
|
187 |
+
clearKBUploadDirectory(uploads_dir)
|
188 |
+
# Read and Embed New Files provided
|
189 |
+
for file in request.files.getlist('files[]'):
|
190 |
+
print("File Received>>>" + file.filename)
|
191 |
+
file.save(os.path.join(uploads_dir, secure_filename(file.filename)))
|
192 |
+
loader = PyPDFLoader(os.path.join(uploads_dir, secure_filename(file.filename)))
|
193 |
+
documents.extend(loader.load())
|
194 |
+
else:
|
195 |
+
loader = PyPDFLoader('./KnowledgeBase/Jio.pdf')
|
196 |
+
documents.extend(loader.load())
|
197 |
+
|
198 |
+
if urlProvided:
|
199 |
+
weburl = request.form.getlist('weburl')
|
200 |
+
print(weburl)
|
201 |
+
urlList = weburl[0].split(';')
|
202 |
+
print(urlList)
|
203 |
+
print("Selenium Started", datetime.now().strftime("%H:%M:%S"))
|
204 |
+
# urlLoader=RecursiveUrlLoader(urlList[0])
|
205 |
+
urlLoader = SeleniumURLLoader(urlList)
|
206 |
+
print("Selenium Completed", datetime.now().strftime("%H:%M:%S"))
|
207 |
+
documents.extend(urlLoader.load())
|
208 |
+
|
209 |
+
return documents
|
210 |
+
|
211 |
+
|
212 |
+
def getRAGChain(customerName,customerDistrict, custDetailsPresent,vectordb):
|
213 |
+
chain = RetrievalQA.from_chain_type(
|
214 |
+
llm=getLLMModel(0),
|
215 |
+
chain_type='stuff',
|
216 |
+
retriever=vectordb.as_retriever(),
|
217 |
+
verbose=False,
|
218 |
+
chain_type_kwargs={
|
219 |
+
"verbose": False,
|
220 |
+
"prompt": createPrompt(customerName, customerDistrict, custDetailsPresent),
|
221 |
+
"memory": ConversationBufferWindowMemory(
|
222 |
+
k=3,
|
223 |
+
memory_key="history",
|
224 |
+
input_key="question"),
|
225 |
+
}
|
226 |
+
)
|
227 |
+
return chain
|
228 |
+
|
229 |
+
def createVectorDB(documents):
|
230 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
231 |
+
texts = text_splitter.split_documents(documents)
|
232 |
+
print("All chunk List START ***********************\n\n")
|
233 |
+
pretty_print_docs(texts)
|
234 |
+
print("All chunk List END ***********************\n\n")
|
235 |
+
embeddings = getEmbeddingModel(0)
|
236 |
+
vectordb = Chroma.from_documents(texts, embeddings)
|
237 |
+
return vectordb
|
238 |
+
|
239 |
|
240 |
if __name__ == '__main__':
|
241 |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|
242 |
+
|