Spaces:
Sleeping
Sleeping
File size: 517 Bytes
0182b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 |
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
def calculate_cosine_similarity(user_embedding, product_embeddings, product_ids, top_n=5):
user_embedding = user_embedding.reshape(1, -1)
product_embeddings = np.array(product_embeddings)
similarities = cosine_similarity(user_embedding, product_embeddings).flatten()
top_indices = similarities.argsort()[::-1][:top_n]
recommendations = [(product_ids[i], similarities[i]) for i in top_indices]
return recommendations
|