Spaces:
Sleeping
Sleeping
import torch | |
from transformers import BertTokenizer, BertModel | |
from torch.nn import Embedding | |
import numpy as np | |
# BERT 모델 및 토크나이저 로드 | |
tokenizer = BertTokenizer.from_pretrained("klue/bert-base") | |
bert_model = BertModel.from_pretrained("klue/bert-base") | |
# 상품 데이터 임베딩 | |
def embed_product_data(product_data): | |
text = product_data.get("title", "") + " " + product_data.get("description", "") | |
inputs = tokenizer( | |
text, return_tensors="pt", truncation=True, padding=True, max_length=128 | |
) | |
outputs = bert_model(**inputs) | |
text_embedding = outputs.last_hidden_state.mean(dim=1) | |
category_embedding_layer = Embedding(num_embeddings=50, embedding_dim=16) | |
color_embedding_layer = Embedding(num_embeddings=20, embedding_dim=8) | |
category_id = product_data.get("category_id", 0) | |
color_id = product_data.get("color_id", 0) | |
category_embedding = category_embedding_layer(torch.tensor([category_id])) | |
color_embedding = color_embedding_layer(torch.tensor([color_id])) | |
combined_embedding = torch.cat((text_embedding, category_embedding, color_embedding), dim=1) | |
return combined_embedding.detach().numpy() | |
# 사용자 데이터 임베딩 | |
def embed_user_data(user_data): | |
embedding_layer = Embedding(num_embeddings=100, embedding_dim=128) | |
gender_id = 0 if user_data['gender'] == 'M' else 1 | |
scaled_height = int((user_data['height'] - 50) * 99 // 200) | |
scaled_weight = int((user_data['weight'] - 30) * 99 // 170) | |
age_embedding = embedding_layer(torch.tensor([user_data['age']])).view(1, -1) | |
gender_embedding = embedding_layer(torch.tensor([gender_id])).view(1, -1) | |
height_embedding = embedding_layer(torch.tensor([scaled_height])).view(1, -1) | |
weight_embedding = embedding_layer(torch.tensor([scaled_weight])).view(1, -1) | |
combined_embedding = torch.cat((age_embedding, gender_embedding, height_embedding, weight_embedding), dim=1) | |
return combined_embedding.detach().numpy() | |