shortpingoo / train_model.py
waseoke's picture
Update train_model.py
2bffc21 verified
raw
history blame
1.06 kB
import torch
import torch.nn.functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader
def train_triplet_model(product_model, anchor_data, positive_data, negative_data, num_epochs=10, learning_rate=0.001, margin=1.0):
optimizer = Adam(product_model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
product_model.train()
optimizer.zero_grad()
# Forward pass
anchor_vec = product_model(anchor_data)
positive_vec = product_model(positive_data)
negative_vec = product_model(negative_data)
# Triplet loss calculation
positive_distance = F.pairwise_distance(anchor_vec, positive_vec)
negative_distance = F.pairwise_distance(anchor_vec, negative_vec)
triplet_loss = torch.clamp(positive_distance - negative_distance + margin, min=0).mean()
# Backward pass and optimization
triplet_loss.backward()
optimizer.step()
print(f"Epoch {epoch + 1}, Loss: {triplet_loss.item()}")
return product_model