Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
from torch.optim import Adam | |
from torch.utils.data import DataLoader | |
def train_triplet_model(product_model, anchor_data, positive_data, negative_data, num_epochs=10, learning_rate=0.001, margin=1.0): | |
optimizer = Adam(product_model.parameters(), lr=learning_rate) | |
for epoch in range(num_epochs): | |
product_model.train() | |
optimizer.zero_grad() | |
# Forward pass | |
anchor_vec = product_model(anchor_data) | |
positive_vec = product_model(positive_data) | |
negative_vec = product_model(negative_data) | |
# Triplet loss calculation | |
positive_distance = F.pairwise_distance(anchor_vec, positive_vec) | |
negative_distance = F.pairwise_distance(anchor_vec, negative_vec) | |
triplet_loss = torch.clamp(positive_distance - negative_distance + margin, min=0).mean() | |
# Backward pass and optimization | |
triplet_loss.backward() | |
optimizer.step() | |
print(f"Epoch {epoch + 1}, Loss: {triplet_loss.item()}") | |
return product_model | |