Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ from pymongo import MongoClient
|
|
2 |
from transformers import BertTokenizer, BertModel
|
3 |
import torch
|
4 |
from torch.nn import Embedding
|
|
|
|
|
5 |
|
6 |
# MongoDB Atlas 연결 설정
|
7 |
client = MongoClient("mongodb+srv://waseoke:[email protected]/test?retryWrites=true&w=majority&tls=true&tlsAllowInvalidCertificates=true")
|
@@ -107,4 +109,49 @@ for user_data in all_users:
|
|
107 |
)
|
108 |
print(f"Embedding saved to MongoDB Atlas for user_id {user_data['user_id']}.")
|
109 |
except ValueError as e:
|
110 |
-
print(f"Skipping user_id {user_data['user_id']} due to error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import BertTokenizer, BertModel
|
3 |
import torch
|
4 |
from torch.nn import Embedding
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
|
8 |
# MongoDB Atlas 연결 설정
|
9 |
client = MongoClient("mongodb+srv://waseoke:[email protected]/test?retryWrites=true&w=majority&tls=true&tlsAllowInvalidCertificates=true")
|
|
|
109 |
)
|
110 |
print(f"Embedding saved to MongoDB Atlas for user_id {user_data['user_id']}.")
|
111 |
except ValueError as e:
|
112 |
+
print(f"Skipping user_id {user_data['user_id']} due to error: {e}")
|
113 |
+
|
114 |
+
# 사용자 맞춤 추천 함수
|
115 |
+
def recommend_products_for_user(user_id, top_n=1):
|
116 |
+
try:
|
117 |
+
# MongoDB에서 사용자 임베딩 가져오기
|
118 |
+
user_embedding_data = user_embedding_collection.find_one({"user_id": user_id})
|
119 |
+
if not user_embedding_data:
|
120 |
+
print(f"User ID {user_id} embedding not found.")
|
121 |
+
return []
|
122 |
+
|
123 |
+
user_embedding = np.array(user_embedding_data["embedding"]).reshape(1, -1)
|
124 |
+
|
125 |
+
# 모든 상품 임베딩 가져오기
|
126 |
+
all_product_embeddings = list(product_embedding_collection.find())
|
127 |
+
|
128 |
+
# 상품 ID 및 임베딩 추출
|
129 |
+
product_ids = []
|
130 |
+
product_embeddings = []
|
131 |
+
for product_data in all_product_embeddings:
|
132 |
+
product_ids.append(product_data["product_id"])
|
133 |
+
product_embeddings.append(np.array(product_data["embedding"]))
|
134 |
+
|
135 |
+
product_embeddings = np.array(product_embeddings)
|
136 |
+
|
137 |
+
# Cosine Similarity 계산
|
138 |
+
similarities = cosine_similarity(user_embedding, product_embeddings).flatten()
|
139 |
+
|
140 |
+
# 유사도 정렬 및 상위 N개 선택
|
141 |
+
top_indices = similarities.argsort()[::-1][:top_n]
|
142 |
+
recommended_products = [(product_ids[i], similarities[i]) for i in top_indices]
|
143 |
+
|
144 |
+
print(f"Top {top_n} recommendations for User ID {user_id}:")
|
145 |
+
for product_id, similarity in recommended_products:
|
146 |
+
print(f"Product ID: {product_id}, Similarity: {similarity:.4f}")
|
147 |
+
|
148 |
+
return recommended_products
|
149 |
+
|
150 |
+
except Exception as e:
|
151 |
+
print(f"Error during recommendation for User ID {user_id}: {e}")
|
152 |
+
return []
|
153 |
+
|
154 |
+
# 사용자 맞춤 추천 실행
|
155 |
+
user_id_to_recommend = 1 # 추천할 사용자 ID
|
156 |
+
top_n_recommendations = 1 # 추천 상품 개수
|
157 |
+
recommended_products = recommend_products_for_user(user_id_to_recommend, top_n=top_n_recommendations)
|