waseoke commited on
Commit
5d7babf
·
verified ·
1 Parent(s): eb7ba37

Delete embed_data2.py

Browse files
Files changed (1) hide show
  1. embed_data2.py +0 -45
embed_data2.py DELETED
@@ -1,45 +0,0 @@
1
- import torch
2
- from transformers import BertTokenizer, BertModel
3
- from torch.nn import Embedding
4
- import numpy as np
5
-
6
- # BERT 모델 및 토크나이저 로드
7
- tokenizer = BertTokenizer.from_pretrained("klue/bert-base")
8
- bert_model = BertModel.from_pretrained("klue/bert-base")
9
-
10
- # 상품 데이터 임베딩
11
- def embed_product_data(product_data):
12
- text = product_data.get("title", "") + " " + product_data.get("description", "")
13
- inputs = tokenizer(
14
- text, return_tensors="pt", truncation=True, padding=True, max_length=128
15
- )
16
- outputs = bert_model(**inputs)
17
- text_embedding = outputs.last_hidden_state.mean(dim=1)
18
-
19
- category_embedding_layer = Embedding(num_embeddings=50, embedding_dim=16)
20
- color_embedding_layer = Embedding(num_embeddings=20, embedding_dim=8)
21
-
22
- category_id = product_data.get("category_id", 0)
23
- color_id = product_data.get("color_id", 0)
24
-
25
- category_embedding = category_embedding_layer(torch.tensor([category_id]))
26
- color_embedding = color_embedding_layer(torch.tensor([color_id]))
27
-
28
- combined_embedding = torch.cat((text_embedding, category_embedding, color_embedding), dim=1)
29
- return combined_embedding.detach().numpy()
30
-
31
- # 사용자 데이터 임베딩
32
- def embed_user_data(user_data):
33
- embedding_layer = Embedding(num_embeddings=100, embedding_dim=128)
34
-
35
- gender_id = 0 if user_data['gender'] == 'M' else 1
36
- scaled_height = int((user_data['height'] - 50) * 99 // 200)
37
- scaled_weight = int((user_data['weight'] - 30) * 99 // 170)
38
-
39
- age_embedding = embedding_layer(torch.tensor([user_data['age']])).view(1, -1)
40
- gender_embedding = embedding_layer(torch.tensor([gender_id])).view(1, -1)
41
- height_embedding = embedding_layer(torch.tensor([scaled_height])).view(1, -1)
42
- weight_embedding = embedding_layer(torch.tensor([scaled_weight])).view(1, -1)
43
-
44
- combined_embedding = torch.cat((age_embedding, gender_embedding, height_embedding, weight_embedding), dim=1)
45
- return combined_embedding.detach().numpy()