Spaces:
Sleeping
Sleeping
Update train_model.py
Browse files- train_model.py +105 -15
train_model.py
CHANGED
@@ -1,29 +1,119 @@
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
from torch.optim import Adam
|
4 |
-
from torch.utils.data import DataLoader
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
optimizer = Adam(product_model.parameters(), lr=learning_rate)
|
8 |
|
9 |
for epoch in range(num_epochs):
|
10 |
product_model.train()
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
positive_vec = product_model(positive_data)
|
16 |
-
negative_vec = product_model(negative_data)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
return product_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
from torch.optim import Adam
|
4 |
+
from torch.utils.data import DataLoader, Dataset
|
5 |
+
from pymongo import MongoClient
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
import numpy as np
|
8 |
|
9 |
+
# MongoDB Atlas 연결 설정
|
10 |
+
client = MongoClient("mongodb+srv://waseoke:[email protected]/test?retryWrites=true&w=majority")
|
11 |
+
db = client["two_tower_model"]
|
12 |
+
train_dataset = db["train_dataset"]
|
13 |
+
|
14 |
+
# BERT 모델 및 토크나이저 로드 (예: klue/bert-base)
|
15 |
+
tokenizer = BertTokenizer.from_pretrained("klue/bert-base")
|
16 |
+
bert_model = BertModel.from_pretrained("klue/bert-base")
|
17 |
+
|
18 |
+
# 상품 임베딩 함수
|
19 |
+
def embed_product_data(product):
|
20 |
+
"""
|
21 |
+
상품 데이터를 임베딩하는 함수.
|
22 |
+
"""
|
23 |
+
text = product.get("product_name", "") + " " + product.get("product_description", "")
|
24 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
25 |
+
outputs = bert_model(**inputs)
|
26 |
+
embedding = outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten() # 평균 풀링
|
27 |
+
return embedding
|
28 |
+
|
29 |
+
# PyTorch Dataset 정의
|
30 |
+
class TripletDataset(Dataset):
|
31 |
+
def __init__(self, dataset):
|
32 |
+
self.dataset = dataset
|
33 |
+
|
34 |
+
def __len__(self):
|
35 |
+
return len(self.dataset)
|
36 |
+
|
37 |
+
def __getitem__(self, idx):
|
38 |
+
data = self.dataset[idx]
|
39 |
+
anchor = torch.tensor(data["anchor_embedding"], dtype=torch.float32)
|
40 |
+
positive = torch.tensor(data["positive_embedding"], dtype=torch.float32)
|
41 |
+
negative = torch.tensor(data["negative_embedding"], dtype=torch.float32)
|
42 |
+
return anchor, positive, negative
|
43 |
+
|
44 |
+
# MongoDB에서 데이터셋 로드 및 임베딩 변환
|
45 |
+
def prepare_training_data():
|
46 |
+
dataset = list(train_dataset.find()) # MongoDB에서 데이터를 가져옵니다.
|
47 |
+
if not dataset:
|
48 |
+
raise ValueError("No training data found in MongoDB.")
|
49 |
+
|
50 |
+
# Anchor, Positive, Negative 임베딩 생성
|
51 |
+
embedded_dataset = []
|
52 |
+
for entry in dataset:
|
53 |
+
try:
|
54 |
+
anchor_embedding = embed_product_data(entry["anchor"]["product"])
|
55 |
+
positive_embedding = embed_product_data(entry["positive"]["product"])
|
56 |
+
negative_embedding = embed_product_data(entry["negative"]["product"])
|
57 |
+
embedded_dataset.append({
|
58 |
+
"anchor_embedding": anchor_embedding,
|
59 |
+
"positive_embedding": positive_embedding,
|
60 |
+
"negative_embedding": negative_embedding,
|
61 |
+
})
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Error embedding data: {e}")
|
64 |
+
|
65 |
+
return TripletDataset(embedded_dataset)
|
66 |
+
|
67 |
+
# Triplet Loss를 학습시키는 함수
|
68 |
+
def train_triplet_model(product_model, train_loader, num_epochs=10, learning_rate=0.001, margin=1.0):
|
69 |
optimizer = Adam(product_model.parameters(), lr=learning_rate)
|
70 |
|
71 |
for epoch in range(num_epochs):
|
72 |
product_model.train()
|
73 |
+
total_loss = 0
|
74 |
|
75 |
+
for anchor, positive, negative in train_loader:
|
76 |
+
optimizer.zero_grad()
|
|
|
|
|
77 |
|
78 |
+
# Forward pass
|
79 |
+
anchor_vec = product_model(anchor)
|
80 |
+
positive_vec = product_model(positive)
|
81 |
+
negative_vec = product_model(negative)
|
82 |
|
83 |
+
# Triplet loss 계산
|
84 |
+
positive_distance = F.pairwise_distance(anchor_vec, positive_vec)
|
85 |
+
negative_distance = F.pairwise_distance(anchor_vec, negative_vec)
|
86 |
+
triplet_loss = torch.clamp(positive_distance - negative_distance + margin, min=0).mean()
|
87 |
|
88 |
+
# 역전파와 최적화
|
89 |
+
triplet_loss.backward()
|
90 |
+
optimizer.step()
|
91 |
+
|
92 |
+
total_loss += triplet_loss.item()
|
93 |
+
|
94 |
+
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss / len(train_loader):.4f}")
|
95 |
|
96 |
return product_model
|
97 |
+
|
98 |
+
# 모델 학습 파이프라인
|
99 |
+
def main():
|
100 |
+
# 모델 초기화 (예시 모델)
|
101 |
+
product_model = torch.nn.Sequential(
|
102 |
+
torch.nn.Linear(768, 256), # 768: BERT 임베딩 차원
|
103 |
+
torch.nn.ReLU(),
|
104 |
+
torch.nn.Linear(256, 128)
|
105 |
+
)
|
106 |
+
|
107 |
+
# 데이터 준비
|
108 |
+
triplet_dataset = prepare_training_data()
|
109 |
+
train_loader = DataLoader(triplet_dataset, batch_size=16, shuffle=True)
|
110 |
+
|
111 |
+
# 모델 학습
|
112 |
+
trained_model = train_triplet_model(product_model, train_loader)
|
113 |
+
|
114 |
+
# 학습된 모델 저장
|
115 |
+
torch.save(trained_model.state_dict(), "product_model.pth")
|
116 |
+
print("Model training completed and saved.")
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
main()
|