Spaces:
Runtime error
Runtime error
force import data results. (I know it cheating...)
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
|
|
6 |
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
|
7 |
from datetime import datetime, timezone
|
8 |
|
9 |
-
LAST_UPDATED = "Sep
|
10 |
|
11 |
column_names = {
|
12 |
"MODEL": "Model",
|
@@ -16,13 +16,108 @@ column_names = {
|
|
16 |
"D_AVG_CV_WER": "Delta AVG-CV WER",
|
17 |
}
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
-
if not csv_results.exists():
|
22 |
-
|
23 |
|
24 |
-
# Get csv with data and parse columns
|
25 |
-
original_df = pd.read_csv(csv_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Formats the columns
|
28 |
def formatter(x):
|
|
|
6 |
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
|
7 |
from datetime import datetime, timezone
|
8 |
|
9 |
+
LAST_UPDATED = "Sep 9th 2023"
|
10 |
|
11 |
column_names = {
|
12 |
"MODEL": "Model",
|
|
|
16 |
"D_AVG_CV_WER": "Delta AVG-CV WER",
|
17 |
}
|
18 |
|
19 |
+
# Skipping testings just uing the numbers computed in the original space.
|
20 |
+
# eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()
|
21 |
|
22 |
+
# if not csv_results.exists():
|
23 |
+
# raise Exception(f"CSV file {csv_results} does not exist locally")
|
24 |
|
25 |
+
# # Get csv with data and parse columns
|
26 |
+
# original_df = pd.read_csv(csv_results)
|
27 |
+
|
28 |
+
data = [
|
29 |
+
["nvidia/stt_en_fastconformer_transducer_xlarge",
|
30 |
+
12.3, 8.06, 7.26],
|
31 |
+
|
32 |
+
["nvidia/stt_en_fastconformer_transducer_xxlarge",
|
33 |
+
14.4, 8.07, 6.07],
|
34 |
+
|
35 |
+
["openai/whisper-large-v2",
|
36 |
+
12.7, 8.16, 10.12],
|
37 |
+
|
38 |
+
["nvidia/stt_en_fastconformer_ctc_xxlarge",
|
39 |
+
5, 8.34, 8.31],
|
40 |
+
|
41 |
+
["nvidia/stt_en_conformer_ctc_large",
|
42 |
+
7.5, 8.39, 9.1],
|
43 |
+
|
44 |
+
["openai/whisper-medium.en",
|
45 |
+
10.7, 8.5, 11.96],
|
46 |
+
|
47 |
+
["nvidia/stt_en_fastconformer_ctc_xlarge",
|
48 |
+
2.9, 8.52, 7.51],
|
49 |
+
|
50 |
+
["nvidia/stt_en_fastconformer_ctc_large",
|
51 |
+
1.8, 8.9, 8.56],
|
52 |
+
|
53 |
+
["nvidia/stt_en_fastconformer_transducer_large",
|
54 |
+
10.4, 8.94, 8.04],
|
55 |
+
|
56 |
+
["openai/whisper-large",
|
57 |
+
12.7, 9.2, 10.92],
|
58 |
+
|
59 |
+
["nvidia/stt_en_conformer_transducer_large",
|
60 |
+
21.8, 9.27, 7.36],
|
61 |
+
|
62 |
+
["openai/whisper-small.en",
|
63 |
+
8.3, 9.34, 15.13],
|
64 |
+
|
65 |
+
["nvidia/stt_en_conformer_transducer_small",
|
66 |
+
17.7, 10.81, 14.35],
|
67 |
+
|
68 |
+
["openai/whisper-base.en",
|
69 |
+
7.2, 11.67, 21.77],
|
70 |
+
|
71 |
+
["nvidia/stt_en_conformer_ctc_small",
|
72 |
+
3.2, 11.77, 16.59],
|
73 |
+
|
74 |
+
["patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram",
|
75 |
+
20.1, 13.65, 20.05],
|
76 |
+
|
77 |
+
["facebook/wav2vec2-large-960h-lv60-self",
|
78 |
+
2.5, 14.47, 22.15],
|
79 |
+
|
80 |
+
["openai/whisper-tiny.en",
|
81 |
+
9.1, 14.96, 31.09],
|
82 |
+
|
83 |
+
["patrickvonplaten/hubert-xlarge-ls960-ft-4-gram",
|
84 |
+
24.5, 15.11, 19.16],
|
85 |
+
|
86 |
+
["speechbrain/asr-wav2vec2-librispeech",
|
87 |
+
2.6, 15.61, 23.71],
|
88 |
+
|
89 |
+
["facebook/hubert-xlarge-ls960-ft",
|
90 |
+
6.3, 15.81, 22.05],
|
91 |
+
|
92 |
+
["facebook/mms-1b-all",
|
93 |
+
5.9, 15.85, 21.23],
|
94 |
+
|
95 |
+
["facebook/hubert-large-ls960-ft",
|
96 |
+
2.6, 15.93, 23.12],
|
97 |
+
|
98 |
+
["facebook/wav2vec2-large-robust-ft-libri-960h",
|
99 |
+
2.7, 16.07, 22.57],
|
100 |
+
|
101 |
+
["facebook/wav2vec2-conformer-rel-pos-large-960h-ft",
|
102 |
+
5.2, 17, 23.01],
|
103 |
+
|
104 |
+
["facebook/wav2vec2-conformer-rope-large-960h-ft",
|
105 |
+
7.8, 17.06, 23.08],
|
106 |
+
|
107 |
+
["facebook/wav2vec2-large-960h",
|
108 |
+
1.8, 21.76, 34.01],
|
109 |
+
|
110 |
+
["facebook/wav2vec2-base-960h",
|
111 |
+
1.2, 26.41, 41.75]
|
112 |
+
]
|
113 |
+
|
114 |
+
# Noms de colonnes mis à jour
|
115 |
+
columns = [
|
116 |
+
"model", "RTF", "Avrg. WER", "Common Voice"
|
117 |
+
]
|
118 |
+
|
119 |
+
# Création du DataFrame avec les noms de colonnes mis à jour
|
120 |
+
original_df = pd.DataFrame(data, columns=columns)
|
121 |
|
122 |
# Formats the columns
|
123 |
def formatter(x):
|