entity-extraction / model.py
wasimmadha's picture
Add application file
66e5e13
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModel
# ====================================================
# Model
# ====================================================
class CustomModel(nn.Module):
def __init__(self, cfg, config_path=None, pretrained=False):
super().__init__()
self.cfg = cfg
if config_path is None:
self.config = AutoConfig.from_pretrained(cfg.model, output_hidden_states=True)
else:
self.config = torch.load(config_path)
if pretrained:
self.model = AutoModel.from_pretrained(cfg.model, config=self.config)
else:
self.model = AutoModel.from_config(self.config)
self.fc_dropout = nn.Dropout(cfg.fc_dropout)
self.fc = nn.Linear(self.config.hidden_size, 1)
self._init_weights(self.fc)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def feature(self, inputs):
outputs = self.model(**inputs)
last_hidden_states = outputs[0]
return last_hidden_states
def forward(self, inputs):
feature = self.feature(inputs)
output = self.fc(self.fc_dropout(feature))
return output