Spaces:
Sleeping
Sleeping
File size: 11,882 Bytes
e66a197 b4aebff 6147540 5917490 b4aebff dd08d78 4a69a01 3f49bfa 8101a0b 4a69a01 8101a0b b4aebff 4a69a01 b4aebff d350c95 b4aebff e66a197 b4aebff e66a197 b4aebff 3152190 0618a80 3152190 6fbea2f 3152190 5aba5d7 0618a80 5aba5d7 0618a80 5aba5d7 100ece9 b4aebff 23af236 142bf38 b4aebff 070ea4d b4aebff 01746ea 8101a0b 01746ea b4aebff 01746ea b4aebff 8101a0b 01746ea b4aebff 817d2a2 b4aebff 817d2a2 915d761 817d2a2 e8c295b 3152190 b4aebff d203012 37bbe9e 1d16be6 b4aebff d203012 b4aebff f68affc 4a69a01 f68affc b4aebff f68affc b4aebff 6eec559 54044cc b4aebff d203012 8a45492 b4aebff 817d2a2 b4aebff 817d2a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import pandas as pd
import librosa
import os
import torch
import numpy as np
from datasets import Dataset, DatasetDict
from datasets import load_dataset
from df.enhance import enhance, init_df, load_audio, save_audio
model_enhance, df_state, _ = init_df()
def remove_nn(wav, sample_rate=16000):
audio=librosa.resample(wav,orig_sr=sample_rate,target_sr=df_state.sr(),)
audio=torch.tensor([audio])
# audio, _ = load_audio('full_generation.wav', sr=df_state.sr())
enhanced = enhance(model_enhance, df_state, audio)
# save_audio("enhanced.wav", enhanced, df_state.sr())
audiodata=librosa.resample(enhanced[0].numpy(),orig_sr=df_state.sr(),target_sr=sample_rate)
return 16000, audiodata/np.max(audiodata)
class DataEditor:
def __init__(self,df):
self.df=df
self.current_selected = -1
self.current_page = 0
self.datatable =df
self.data =self.df[['text','flag']]
self.sdata =self.df['audio'].to_list()
def settt(self,df):
self.df=pd.DataFrame()
self.data =pd.DataFrame()
self.sdata =[]
self.df=df
self.next_prveo=0
self.data =self.df[['text','flag']]
self.sdata =self.df['audio'].to_list()
self.current_page = 0
self.current_selected =1
return self.data
def get_output_audio(self):
return self.sdata[self.current_selected] if self.current_selected >= 0 else None
def get_prev_page(self,pagenumber):
if self.next_prveo>=0:
self.next_prveo-=1
self.current_page=self.next_prveo
row = self.data.iloc[self.next_prveo]
txt_audio = row['text']
return txt_audio
def finsh_data(self):
self.df['audio'] = self.sdata
self.df[['text','flag']]=self.data
return self.df
def login(self, token):
# Your actual login logic here (e.g., database check)
if token == os.environ.get("token_login") :
return gr.update(visible=False),gr.update(visible=True),True
else:
return gr.update(visible=True), gr.update(visible=False),None
def load_demo(self,sesion):
if sesion:
return gr.update(visible=False),gr.update(visible=True)
return gr.update(visible=True), gr.update(visible=False)
def get_next_page(self,pagenumber):
if self.next_prveo<9:
self.next_prveo+=1
self.current_page=self.next_prveo
row = self.data.iloc[self.next_prveo]
txt_audio = row['text']
return txt_audio
def get_page_data(self, page_number):
start_index = page_number * 10
end_index = start_index + 10
return self.data.iloc[start_index:end_index]
def update_page(self, new_page):
self.current_page = new_page
return (
self.get_page_data(self.current_page),
self.current_page > 0,
self.current_page < len(self.data) // 10 - 1,
self.current_page
)
def create_Tabs(self): # fix: method was missing
#with gr.Blocks() as interface:
with gr.Tabs():
with gr.TabItem("Dir"):
self.text_input = gr.Textbox(lines=5, placeholder="Enter your text here...",rtl=True)
self.sigmant_word=gr.Number(label="sigmant_word",value=6)
self.buttonn = gr.Button("Create Table")
with gr.TabItem("Cut Text"):
self.txturll = gr.Textbox(placeholder="link dir", interactive=True)
self.btn_displayy = gr.Button("Load Dataset",scale=1, size="sm")
def convert_to_dataframe(self,chunks):
df = pd.DataFrame({'Text': chunks, 'Flag': 0, 'Audio': None })
return df
def create_chunks_with_properties(self,text,sigmant_word):
words = text.split() # تقسيم النص إلى كلمات
chunks = []
current_chunk = []
for word in words:
current_chunk.append(word)
if len(current_chunk) ==sigmant_word: # إذا وصل عدد الكلمات في الجزء الحالي إلى 6
chunks.append(" ".join(current_chunk)) # إضافة الجزء إلى القائمة وإعادة تهيئة الجزء الحالي
current_chunk = []
if current_chunk: # إضافة الجزء الأخير إذا لم يكن فارغًا
chunks.append(" ".join(current_chunk))
chunks=self.convert_to_dataframe(chunks)
v=self.settt(df)
return v
def convert_dataframe_to_dataset(self, namedata):
datatable=self.finsh_data()
if "__index_level_0__" in datatable.columns:
datatable =datatable.drop(columns=["__index_level_0__"])
train_df =datatable
ds = {
"train": Dataset.from_pandas(train_df)
}
dataset = DatasetDict(ds)
#dirr = '/content/drive/MyDrive/vitsM/DATA/sata/NewData2hba/' + namedata
#dataset.save_to_disk(dirr)
dataset.push_to_hub(namedata,token=os.environ.get("auth_acess_data"),private=True)
return namedata
def read_dataset(self, link):
try:
dataset =load_dataset(link,token=os.environ.get("auth_acess_data"))
df= dataset["train"].to_pandas()
v=self.settt(df)
return self.get_page_data(self.current_page),link
except FileNotFoundError:
return None, f"Error: Dataset not found at {link}"
except Exception as e:
return None, f"Error loading dataset: {e}"
def on_select(self,evt:gr.SelectData):
if evt.index:
index_now = evt.index[0]
self.current_selected = (self.current_page * 10) + index_now
row = self.data.iloc[self.current_selected]
txt_audio = row['text']
row_audio = self.sdata[self.current_selected]
if row['flag'] !=0:
return txt_audio,(16000,row_audio)
else :
return txt_audio,None
else:
return None," "
def on_saveAs_row(self):
return self.get_page_data(self.current_page),None,""
def on_row_save(self, text,data_oudio):
if text!="" and data_oudio is not None:
row = self.data.iloc[self.current_selected]
#row['text'] = text
row['flag']=1
self.data.iloc[self.current_selected] = row
sr,audio=data_oudio
if sr!=16000:
audio=audio.astype(np.float32)
audio/=np.max(np.abs(audio))
audio=librosa.resample(audio,orig_sr=sr,target_sr=16000)
self.sdata[self.current_selected] =audio
return "",None
def on_row_delete(self):
if self.current_selected>=0:
row = self.data.iloc[self.current_selected]
#row['text'] = text
row['flag']=0
self.data.iloc[self.current_selected] = row
self.sdata[self.current_selected] = None
return self.get_page_data(self.current_page),None,""
def startt(self):
with gr.Blocks() as demo:
sesion_state = gr.State()
with gr.Column(scale=1, min_width=200,visible=True) as login_panal: # Login panel
gr.Markdown("## auth acess page")
token_login = gr.Textbox(label="token")
login_button = gr.Button("Login")
with gr.Column(scale=1, visible=False) as main_panel:
self.create_interface()
login_button.click(self.login, inputs=[token_login], outputs=[login_panal,main_panel,sesion_state])
demo.load(self.load_demo, [sesion_state], [login_panal,main_panel])
return demo
def create_interface(self):
# with gr.Blocks() as demo:
with gr.Row():
self.create_Tabs()
#self.txturll = gr.Textbox(placeholder="link dir", interactive=True)
#self.btn_displayy = gr.Button("Load Dataset",scale=1, size="sm",variant="primary")
with gr.Row():
with gr.Column():
self.table = gr.Dataframe(value=self.datatable, headers=['text', 'audio'], interactive=True)
with gr.Row(equal_height=False):
self.prev_button = gr.Button("Previous Page",scale=1, size="sm",variant="primary")
self.page_number = gr.Number(value=self.current_page + 1, label="Page",scale=1)
self.next_button = gr.Button("Next Page",scale=1, size="sm",variant="primary")
with gr.Column():
self.txtsaveurl = gr.Textbox(placeholder="Save Dataset", interactive=True)
self.btn_savedataset = gr.Button("Save Dataset",scale=1, size="sm",variant="primary")
self.label =gr.Text("STATE")
with gr.Column():
self.txt_audio = gr.Textbox(label="Audio Text", interactive=True,rtl=True)
self.btn_record = gr.Audio(interactive=True)
with gr.Row():
self.btn_save = gr.Button("Save", size="sm",variant="primary",min_width=50)
self.btn_saveAs = gr.Button("SaveAs", size="sm",variant="primary",min_width=50)
self.btn_enhance = gr.Button("enhance ", size="sm",variant="primary",min_width=50)
# self.buttonnext=gr.Button("Next",)
# self.buttonprev=gr.Button("Prev")
self.btn_delete = gr.Button("Delete", size="sm",variant="primary",min_width=50)
self.btn_displayy.click(self.read_dataset, [self.txturll], [self.table, self.txtsaveurl])
self.table.select(self.on_select, None,[self.txt_audio,self.btn_record])
self.btn_save.click(self.on_row_save, [self.txt_audio,self.btn_record],[self.txt_audio,self.btn_record])
self.btn_saveAs.click(self.on_saveAs_row, [], [self.table,self.btn_record , self.txt_audio])
self.btn_delete.click(self.on_row_delete, [], [self.table,self.btn_record , self.txt_audio])
#self.buttonnext.click(lambda page:self.get_next_page(page+1), [self.page_number], [self.txt_audio])
#self.buttonprev.click(lambda page:self.get_prev_page(page-1), [self.page_number], [self.txt_audio])
self.btn_savedataset.click(self.convert_dataframe_to_dataset, [self.txtsaveurl], [self.label])
self.prev_button.click(lambda page: self.update_page(page - 1), [self.page_number], [self.table, self.prev_button, self.next_button, self.page_number])
#self.btn_save.click(self.save_row, [self.txt_audio,self.audio_player], [self.data_table])
self.btn_enhance.click(lambda: remove_nn(self.get_output_audio()), [],self.btn_record)
self.buttonn.click(self.create_chunks_with_properties,[self.text_input,self.sigmant_word],[self.table])
self.next_button.click(lambda page: self.update_page(page + 1), [self.page_number], [self.table, self.prev_button, self.next_button, self.page_number])
#demo.launch()
df1=pd.DataFrame(columns=['text','flag','audio'])
editor = DataEditor(df1)
demo=editor.startt()
demo.launch() |