Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForTextToWaveform
|
4 |
+
def install_model(namemodel,tokenn,namemodelonxx):
|
5 |
+
|
6 |
+
model = AutoModelForTextToWaveform.from_pretrained(namemodel,token=tokenn)
|
7 |
+
namemodelonxxx=convert_to_onnx(model,namemodelonxx)
|
8 |
+
return namemodelonxxx
|
9 |
+
def convert_to_onnx(model,namemodelonxx):
|
10 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
11 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
12 |
+
torch.onnx.export(
|
13 |
+
model, # The model to be exported
|
14 |
+
example_input, # Example input for the model
|
15 |
+
namemodelonxx, # The filename for the exported ONNX model
|
16 |
+
opset_version=11, # Use an appropriate ONNX opset version
|
17 |
+
input_names=['input'], # Name of the input layer
|
18 |
+
output_names=['output'], # Name of the output layer
|
19 |
+
dynamic_axes={
|
20 |
+
'input': {0: 'batch_size', 1: 'sequence_length'}, # Dynamic axes for variable-length inputs
|
21 |
+
'output': {0: 'batch_size'}
|
22 |
+
}
|
23 |
+
)
|
24 |
+
return namemodelonxx
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
with gr.Row():
|
27 |
+
with gr.Column():
|
28 |
+
text_n_model=gr.Textbox(label="name model")
|
29 |
+
text_n_token=gr.Textbox(label="token")
|
30 |
+
text_n_onxx=gr.Textbox(label="name model onxx")
|
31 |
+
with gr.Column():
|
32 |
+
|
33 |
+
btn=gr.Button("convert")
|
34 |
+
label=gr.Label("return name model onxx")
|
35 |
+
btn.click(install_model,[text_n_model,text_n_token,text_n_onxx],[label])
|
36 |
+
demo.launch()
|