Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,146 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
3 |
from VitsModelSplit.vits_model_only_d import Vits_models_only_decoder
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.onnx
|
3 |
+
import onnx
|
4 |
from VitsModelSplit.vits_model_only_d import Vits_models_only_decoder
|
5 |
+
from VitsModelSplit.vits_model import VitsModel
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
class OnnxModelConverter:
|
9 |
+
def __init__(self):
|
10 |
+
self.model = None
|
11 |
+
def download_file(self,file_path):
|
12 |
+
ff= gr.File(value=file_path, visible=True)
|
13 |
+
file_url = ff.value['url']
|
14 |
+
return file_url
|
15 |
+
|
16 |
+
def convert(self, model_name, token, onnx_filename, conversion_type):
|
17 |
+
"""
|
18 |
+
Main function to handle different types of model conversions.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
model_name (str): Name of the model to convert.
|
22 |
+
token (str): Access token for loading the model.
|
23 |
+
onnx_filename (str): Desired filename for the ONNX output.
|
24 |
+
conversion_type (str): Type of conversion ('decoder', 'only_decoder', or 'full_model').
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
str: The path to the generated ONNX file.
|
28 |
+
"""
|
29 |
+
if conversion_type == "decoder":
|
30 |
+
return self.convert_decoder(model_name, token, onnx_filename)
|
31 |
+
elif conversion_type == "only_decoder":
|
32 |
+
return self.convert_only_decoder(model_name, token, onnx_filename)
|
33 |
+
elif conversion_type == "full_model":
|
34 |
+
return self.convert_full_model(model_name, token, onnx_filename)
|
35 |
+
else:
|
36 |
+
raise ValueError("Invalid conversion type. Choose from 'decoder', 'only_decoder', or 'full_model'.")
|
37 |
+
|
38 |
+
def convert_decoder(self, model_name, token, onnx_filename):
|
39 |
+
"""
|
40 |
+
Converts only the decoder part of the Vits model to ONNX format.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
model_name (str): Name of the model to convert.
|
44 |
+
token (str): Access token for loading the model.
|
45 |
+
onnx_filename (str): Desired filename for the ONNX output.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
str: The path to the generated ONNX file.
|
49 |
+
"""
|
50 |
+
model = VitsModel.from_pretrained(model_name, token=token)
|
51 |
+
onnx_file = f"/tmp/{onnx_filename}.onnx"
|
52 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
53 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
54 |
+
|
55 |
+
torch.onnx.export(
|
56 |
+
model,
|
57 |
+
example_input,
|
58 |
+
onnx_file,
|
59 |
+
opset_version=11,
|
60 |
+
input_names=['input'],
|
61 |
+
output_names=['output'],
|
62 |
+
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
|
63 |
+
)
|
64 |
+
|
65 |
+
return onnx_file
|
66 |
+
|
67 |
+
|
68 |
+
def convert_only_decoder(self, model_name, token, onnx_filename):
|
69 |
+
"""
|
70 |
+
Converts only the decoder part of the Vits model to ONNX format.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
model_name (str): Name of the model to convert.
|
74 |
+
token (str): Access token for loading the model.
|
75 |
+
onnx_filename (str): Desired filename for the ONNX output.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
str: The path to the generated ONNX file.
|
79 |
+
"""
|
80 |
+
model = Vits_models_only_decoder.from_pretrained(model_name, token=token)
|
81 |
+
onnx_file = f"/tmp/{onnx_filename}.onnx"
|
82 |
+
|
83 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
84 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
85 |
+
|
86 |
+
torch.onnx.export(
|
87 |
+
model,
|
88 |
+
example_input,
|
89 |
+
onnx_file,
|
90 |
+
opset_version=11,
|
91 |
+
input_names=['input'],
|
92 |
+
output_names=['output'],
|
93 |
+
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
|
94 |
+
)
|
95 |
+
|
96 |
+
return onnx_file
|
97 |
+
|
98 |
+
def convert_full_model(self, model_name, token, onnx_filename):
|
99 |
+
"""
|
100 |
+
Converts the full Vits model (including encoder and decoder) to ONNX format.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
model_name (str): Name of the model to convert.
|
104 |
+
token (str): Access token for loading the model.
|
105 |
+
onnx_filename (str): Desired filename for the ONNX output.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
str: The path to the generated ONNX file.
|
109 |
+
"""
|
110 |
+
model = VitsModel.from_pretrained(model_name, token=token)
|
111 |
+
onnx_file = f"/tmp/{onnx_filename}.onnx"
|
112 |
+
|
113 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
114 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
115 |
+
|
116 |
+
torch.onnx.export(
|
117 |
+
model,
|
118 |
+
example_input,
|
119 |
+
onnx_file,
|
120 |
+
opset_version=11,
|
121 |
+
input_names=['input'],
|
122 |
+
output_names=['output'],
|
123 |
+
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
|
124 |
+
)
|
125 |
+
|
126 |
+
return onnx_file
|
127 |
+
def starrt(self):
|
128 |
+
with gr.Blocks() as demo:
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column():
|
131 |
+
text_n_model=gr.Textbox(label="name model")
|
132 |
+
text_n_token=gr.Textbox(label="token")
|
133 |
+
text_n_onxx=gr.Textbox(label="name model onxx")
|
134 |
+
choice = gr.Dropdown(choices=["decoder", "only_decoder", "full_model"], label="My Dropdown")
|
135 |
+
|
136 |
+
with gr.Column():
|
137 |
+
|
138 |
+
btn=gr.Button("convert")
|
139 |
+
label=gr.Label("return name model onxx")
|
140 |
+
btn.click(self.convert,[text_n_model,text_n_token,text_n_onxx,choice],[outputs=gr.File(label="Download File")])
|
141 |
+
#choice.change(fn=function_change, inputs=choice, outputs=label)
|
142 |
+
return demo
|
143 |
+
c=OnnxModelConverter()
|
144 |
+
cc=c.starrt()
|
145 |
+
cc.launch(share=True)
|
146 |
+
|