Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,406 Bytes
2da45ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import numpy as np
import os
from datasets import Dataset,DatasetDict
from typing import Union,List,Dict
import torch
from dataclasses import dataclass
from transformers.feature_extraction_utils import BatchFeature
from VitsModelSplit.feature_extraction import VitsFeatureExtractor
from VitsModelSplit.vits_model import VitsModel
from transformers import AutoTokenizer
#.............................................
@dataclass
class DataSetFeaturesCollector:
def __init__(self,tokenizer,model,feature_extractor,forward_attention_mask=True) -> None:
self.tokenizer=tokenizer
self.feature_extractor = feature_extractor
self.model=model
self.forward_attention_mask = forward_attention_mask
#.............................................
def pad_waveform(self, raw_speech):
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
batched_speech = BatchFeature({"input_features": raw_speech})
# convert into correct format for padding
padded_inputs = self.feature_extractor.pad(
batched_speech,
padding=True,
return_attention_mask=False,
return_tensors="pt",
)["input_features"]
return padded_inputs
#.............................................
def prepare_dataset(self,batch):
sample = batch['audio']
audio_inputs = self.feature_extractor(
sample,
sampling_rate=16000,
return_attention_mask=False,
do_normalize=False,
)
batch["labels"] = audio_inputs.get("input_features")[0]
batch["waveform_input_length"] = len(sample)
batch["waveform"] = batch['audio']
batch["mel_scaled_input_features"] = audio_inputs.get("mel_scaled_input_features")[0]
textsample = batch['text']
inputs = self.tokenizer(textsample, return_tensors="pt")
inputs = self.tokenizer.pad({'input_ids':inputs.input_ids})
batch['input_ids'] = inputs.input_ids
batch['attention_mask'] = inputs.attention_mask
# batch['speaker_id']=batch['speaker_id']
return batch
#.............................................
def __call__(self, dataset: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
dataset = Dataset.from_list(dataset)
features = dataset.map(
self.prepare_dataset,
remove_columns=dataset.column_names,
desc="preprocess",
)
features = list(features)
model_input_name = "input_ids"
input_ids = [{model_input_name: feature[model_input_name][0]} for feature in features]
# pad input tokens
batch = self.tokenizer.pad(input_ids, return_tensors="pt", return_attention_mask=self.forward_attention_mask)
# pad waveform
waveforms = [np.array(feature["waveform"]) for feature in features]
batch["waveform"] = self.pad_waveform(waveforms)
# pad spectrogram
label_features = [np.array(feature["labels"]) for feature in features]
labels_batch = self.feature_extractor.pad(
{"input_features": [i.T for i in label_features]}, return_tensors="pt", return_attention_mask=True
)
labels = labels_batch["input_features"].transpose(1, 2)
batch["labels"] = labels
batch["labels_attention_mask"] = labels_batch["attention_mask"]
# pad mel spectrogram
mel_scaled_input_features = {
"input_features": [np.array(feature["mel_scaled_input_features"]).squeeze().T for feature in features]
}
mel_scaled_input_features = self.feature_extractor.pad(
mel_scaled_input_features, return_tensors="pt", return_attention_mask=True
)["input_features"].transpose(1, 2)
batch["mel_scaled_input_features"] = mel_scaled_input_features
batch["speaker_id"] = (
torch.tensor([feature["speaker_id"] for feature in dataset]) if "speaker_id" in dataset[0] else None
)
with torch.no_grad():
padding_mask =torch.ones_like(batch['input_ids']).unsqueeze(-1).float()
text_encoder_output = self.model.text_encoder(batch['input_ids'],
padding_mask=padding_mask,
attention_mask = batch['attention_mask']
)
batch['text_encoder_output'] = text_encoder_output
posterior_latents, posterior_means, posterior_log_variances = self.model.posterior_encoder(
batch['labels'], batch['labels_attention_mask'].unsqueeze(1).float()
)
posterior_encode_output={
'posterior_latents':posterior_latents,
'posterior_means':posterior_means,
'posterior_log_variances':posterior_log_variances
}
batch['posterior_encode_output']=posterior_encode_output
return batch
#..............................................................
#.............................................
def run_dataset_features_collection(
dataset_dir,
train_split_name ="train",
eval_split_name="eval",
full_generation_name = 'full_generation',
tokenizer = None,
model = None,
feature_extractor = None,
train_batch_size = 1,
eval_batch_size = 1,
output_dir = "dataset_features"
):
dataset = DatasetDict.load_from_disk(dataset_dir)
data_collator = DataSetFeaturesCollector(
tokenizer = tokenizer,
model = model,
feature_extractor = feature_extractor,
forward_attention_mask = True
)
if train_split_name:
train_dataloader = torch.utils.data.DataLoader(
dataset[train_split_name],
shuffle=False,
collate_fn=data_collator,
batch_size=train_batch_size,
sampler=None,
)
train_dir = os.path.join(output_dir,"train")
os.makedirs(train_dir,exist_ok=True)
for step, batch in enumerate(train_dataloader):
print(f"Train Dataset - batch {step}, waveform {(batch['waveform'].shape)},tokens {(batch['input_ids'].shape)}... ")
fname = os.path.join(train_dir,f"train-batch-{step}.bin")
with open(fname, "wb") as f:
torch.save(batch, f)
if eval_split_name:
eval_dataloader = torch.utils.data.DataLoader(
dataset[eval_split_name],
shuffle=False,
collate_fn=data_collator,
batch_size=eval_batch_size,
sampler=None,
)
eval_dir = os.path.join(output_dir,"eval")
os.makedirs(eval_dir,exist_ok=True)
for step, batch in enumerate(eval_dataloader):
print(f"Eval Dataset - batch {step}, waveform {(batch['waveform'].shape)},tokens {(batch['input_ids'].shape)}... ")
fname = os.path.join(eval_dir,f"eval-batch-{step}.bin")
with open(fname, "wb") as f:
torch.save(batch, f)
if full_generation_name:
full_generation_dataloader = torch.utils.data.DataLoader(
dataset[full_generation_name],
shuffle=False,
collate_fn=data_collator,
batch_size=1,
sampler=None,
)
full_generation_dir = os.path.join(output_dir,"full_generation")
os.makedirs(full_generation_dir,exist_ok=True)
for step, batch in enumerate(full_generation_dataloader):
print(f"Full Generation Dataset - batch {step}, waveform {(batch['waveform'].shape)},tokens {(batch['input_ids'].shape)}... ")
fname = os.path.join(full_generation_dir,f"full-generation-batch-{step}.bin")
with open(fname, "wb") as f:
torch.save(batch, f)
#...........................................................................
import torch.utils.data
class FeaturesCollectionDataset(torch.utils.data.Dataset):
def __init__(self,dataset_dir,device='cpu') -> None:
self.dataset_dir = dataset_dir
self.batchs_path = sorted([os.path.join(self.dataset_dir,file) for file in os.listdir(dataset_dir) if file.endswith('.bin')])
self.device = device
def __len__(self):
return len(self.batchs_path)
def __getitem__(self, idx):
batch_name = self.batchs_path[idx]
with open(batch_name, "rb") as f:
batch = torch.load(f,map_location=torch.device(self.device))
return batch
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths =dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, 0, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i+1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
# subsample
ids_bucket = ids_bucket[self.rank::self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
return self.num_samples // self.batch_size
class VitsCollectionDataset(torch.utils.data.Dataset):
def __init__(self,dataset,hop_length=256,rate=16_000,device='cpu') -> None:
self.dataset = dataset
self.lengths =(torch.tensor(dataset['secs'])*rate//(2*hop_length)).tolist()
self.device = device
def __len__(self):
return self.dataset.num_rows
def __getitem__(self, idx):
return self.dataset[idx]
def get_dataloader(dir_db_train,feature_extractor,name_db='train',batch_size=8,num_workers=0):
dataset = DatasetDict.load_from_disk(dir_db_train)
db_train=VitsCollectionDataset(dataset[name_db])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model=VitsModel.from_pretrained("facebook/mms-tts-ara").to(device)
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara",cache_dir="./")#.to("cuda")
train_sampler = DistributedBucketSampler(
db_train,
batch_size,
[32,300,400,500,600,700,800,900,1000],
num_replicas=1,
rank=0,
shuffle=True)
data_collator = DataSetFeaturesCollector(
tokenizer = tokenizer,
model = model,
feature_extractor = feature_extractor,
forward_attention_mask = True
)
train_dataloader = torch.utils.data.DataLoader(
db_train,
num_workers=num_workers, shuffle=False, pin_memory=True,
collate_fn=data_collator, batch_sampler=train_sampler
)
return train_dataloader
|