File size: 15,406 Bytes
2da45ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

import numpy as np
import os
from datasets import Dataset,DatasetDict
from typing import Union,List,Dict
import torch
from dataclasses import dataclass
from transformers.feature_extraction_utils import BatchFeature
from VitsModelSplit.feature_extraction import VitsFeatureExtractor
from VitsModelSplit.vits_model import VitsModel
from transformers import AutoTokenizer

#.............................................


@dataclass
class DataSetFeaturesCollector:

    def __init__(self,tokenizer,model,feature_extractor,forward_attention_mask=True) -> None:
        self.tokenizer=tokenizer
        self.feature_extractor = feature_extractor
        self.model=model
        self.forward_attention_mask = forward_attention_mask

    #.............................................

    def pad_waveform(self, raw_speech):
        
        is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
        if is_batched_numpy and len(raw_speech.shape) > 2:
            raise ValueError(f"Only mono-channel audio is supported for input to {self}")
        is_batched = is_batched_numpy or (
            isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
        )

        if is_batched:
            raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
        elif not is_batched and not isinstance(raw_speech, np.ndarray):
            raw_speech = np.asarray(raw_speech, dtype=np.float32)
        elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
            raw_speech = raw_speech.astype(np.float32)

        # always return batch
        if not is_batched:
            raw_speech = [np.asarray([raw_speech]).T]

        batched_speech = BatchFeature({"input_features": raw_speech})

        # convert into correct format for padding

        padded_inputs = self.feature_extractor.pad(
            batched_speech,
            padding=True,
            return_attention_mask=False,
            return_tensors="pt",
        )["input_features"]

        return padded_inputs
    
    #.............................................
    
    def prepare_dataset(self,batch):
        
        sample = batch['audio']
        audio_inputs = self.feature_extractor(
                sample,
                sampling_rate=16000,
                return_attention_mask=False,
                do_normalize=False,
            )

        batch["labels"] = audio_inputs.get("input_features")[0]
        batch["waveform_input_length"] = len(sample)
        batch["waveform"] = batch['audio']
        batch["mel_scaled_input_features"] = audio_inputs.get("mel_scaled_input_features")[0]
        textsample = batch['text']
        inputs = self.tokenizer(textsample, return_tensors="pt")
        inputs = self.tokenizer.pad({'input_ids':inputs.input_ids})
        batch['input_ids'] = inputs.input_ids
        batch['attention_mask'] = inputs.attention_mask
       # batch['speaker_id']=batch['speaker_id']


        return batch
    
    
    #.............................................


    def __call__(self, dataset: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods

        dataset = Dataset.from_list(dataset)
        features = dataset.map(
                self.prepare_dataset,
                remove_columns=dataset.column_names,
                desc="preprocess",
                )

        features = list(features)
     
        model_input_name = "input_ids"
        
        input_ids = [{model_input_name: feature[model_input_name][0]} for feature in features]
        
        # pad input tokens
        batch = self.tokenizer.pad(input_ids, return_tensors="pt", return_attention_mask=self.forward_attention_mask)
   
        # pad waveform
        waveforms = [np.array(feature["waveform"]) for feature in features]
        batch["waveform"] = self.pad_waveform(waveforms)

        # pad spectrogram
        label_features = [np.array(feature["labels"]) for feature in features]
        labels_batch = self.feature_extractor.pad(
            {"input_features": [i.T for i in label_features]}, return_tensors="pt", return_attention_mask=True
        )

        labels = labels_batch["input_features"].transpose(1, 2)
        batch["labels"] = labels
        batch["labels_attention_mask"] = labels_batch["attention_mask"]

        # pad mel spectrogram
        mel_scaled_input_features = {
            "input_features": [np.array(feature["mel_scaled_input_features"]).squeeze().T for feature in features]
        }
        mel_scaled_input_features = self.feature_extractor.pad(
            mel_scaled_input_features, return_tensors="pt", return_attention_mask=True
        )["input_features"].transpose(1, 2)

        batch["mel_scaled_input_features"] = mel_scaled_input_features
        batch["speaker_id"] = (
            torch.tensor([feature["speaker_id"] for feature in dataset]) if "speaker_id" in dataset[0] else None
        )
        
        with torch.no_grad():
            padding_mask  =torch.ones_like(batch['input_ids']).unsqueeze(-1).float()
            text_encoder_output = self.model.text_encoder(batch['input_ids'],
                                                        padding_mask=padding_mask,
                                                        attention_mask = batch['attention_mask']
                                                        )
            batch['text_encoder_output'] = text_encoder_output 
            posterior_latents, posterior_means, posterior_log_variances = self.model.posterior_encoder(
                    batch['labels'], batch['labels_attention_mask'].unsqueeze(1).float()
                   )
            posterior_encode_output={
              'posterior_latents':posterior_latents,
              'posterior_means':posterior_means,
              'posterior_log_variances':posterior_log_variances
            }
            batch['posterior_encode_output']=posterior_encode_output


        
        return batch


#..............................................................



#.............................................

def run_dataset_features_collection(
                         dataset_dir,
                         train_split_name ="train",
                         eval_split_name="eval",
                         full_generation_name = 'full_generation',
                         tokenizer = None,
                         model = None,
                         feature_extractor = None,
                         train_batch_size = 1,
                         eval_batch_size = 1,
                         output_dir = "dataset_features"
                         
                         ):
    
    dataset = DatasetDict.load_from_disk(dataset_dir)
    
    data_collator = DataSetFeaturesCollector(
        tokenizer = tokenizer,
        model = model,
        feature_extractor = feature_extractor,
        forward_attention_mask = True
        )
    
    if train_split_name:
        train_dataloader = torch.utils.data.DataLoader(
            dataset[train_split_name],
            shuffle=False,
            collate_fn=data_collator,
            batch_size=train_batch_size,
            sampler=None,
        )
        
        train_dir = os.path.join(output_dir,"train")
        os.makedirs(train_dir,exist_ok=True)
        
        for step, batch in enumerate(train_dataloader):
            print(f"Train Dataset - batch {step}, waveform {(batch['waveform'].shape)},tokens {(batch['input_ids'].shape)}... ")
            fname = os.path.join(train_dir,f"train-batch-{step}.bin")
            with open(fname, "wb") as f:
                torch.save(batch, f)
            
    if eval_split_name:
        
        eval_dataloader = torch.utils.data.DataLoader(
            dataset[eval_split_name],
            shuffle=False,
            collate_fn=data_collator,
            batch_size=eval_batch_size,
            sampler=None,
        )
        
        eval_dir = os.path.join(output_dir,"eval")
        os.makedirs(eval_dir,exist_ok=True)
        
        for step, batch in enumerate(eval_dataloader):
            print(f"Eval Dataset - batch {step}, waveform {(batch['waveform'].shape)},tokens {(batch['input_ids'].shape)}... ")
            fname = os.path.join(eval_dir,f"eval-batch-{step}.bin")
            with open(fname, "wb") as f:
                torch.save(batch, f)  
    
    if full_generation_name:
        
        full_generation_dataloader = torch.utils.data.DataLoader(
            dataset[full_generation_name],
            shuffle=False,
            collate_fn=data_collator,
            batch_size=1,
            sampler=None,
        )
        
        full_generation_dir = os.path.join(output_dir,"full_generation")
        os.makedirs(full_generation_dir,exist_ok=True)
        
        for step, batch in enumerate(full_generation_dataloader):
            print(f"Full Generation Dataset - batch {step}, waveform {(batch['waveform'].shape)},tokens {(batch['input_ids'].shape)}... ")
            fname = os.path.join(full_generation_dir,f"full-generation-batch-{step}.bin")
            with open(fname, "wb") as f:
                torch.save(batch, f)  

#...........................................................................

import torch.utils.data 

class FeaturesCollectionDataset(torch.utils.data.Dataset):
    
    def __init__(self,dataset_dir,device='cpu') -> None:
        self.dataset_dir = dataset_dir
        self.batchs_path = sorted([os.path.join(self.dataset_dir,file) for file in os.listdir(dataset_dir) if file.endswith('.bin')])
        self.device = device
        
    def __len__(self):
        return len(self.batchs_path)
    
    def __getitem__(self, idx):
        batch_name = self.batchs_path[idx]
        with open(batch_name, "rb") as f:
            batch = torch.load(f,map_location=torch.device(self.device))
        return batch
        
        
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
    """
    Maintain similar input lengths in a batch.
    Length groups are specified by boundaries.
    Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
  
    It removes samples which are not included in the boundaries.
    Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
    """
    def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
        super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
        self.lengths =dataset.lengths
        self.batch_size = batch_size
        self.boundaries = boundaries
  
        self.buckets, self.num_samples_per_bucket = self._create_buckets()
        self.total_size = sum(self.num_samples_per_bucket)
        self.num_samples = self.total_size // self.num_replicas
  
    def _create_buckets(self):
        buckets = [[] for _ in range(len(self.boundaries) - 1)]
        for i in range(len(self.lengths)):
            length = self.lengths[i]
            idx_bucket = self._bisect(length)
            if idx_bucket != -1:
                buckets[idx_bucket].append(i)
  
        for i in range(len(buckets) - 1, 0, -1):
            if len(buckets[i]) == 0:
                buckets.pop(i)
                self.boundaries.pop(i+1)
  
        num_samples_per_bucket = []
        for i in range(len(buckets)):
            len_bucket = len(buckets[i])
            total_batch_size = self.num_replicas * self.batch_size
            rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
            num_samples_per_bucket.append(len_bucket + rem)
        return buckets, num_samples_per_bucket
  
    def __iter__(self):
      # deterministically shuffle based on epoch
      g = torch.Generator()
      g.manual_seed(self.epoch)
  
      indices = []
      if self.shuffle:
          for bucket in self.buckets:
              indices.append(torch.randperm(len(bucket), generator=g).tolist())
      else:
          for bucket in self.buckets:
              indices.append(list(range(len(bucket))))
  
      batches = []
      for i in range(len(self.buckets)):
          bucket = self.buckets[i]
          len_bucket = len(bucket)
          ids_bucket = indices[i]
          num_samples_bucket = self.num_samples_per_bucket[i]
  
          # add extra samples to make it evenly divisible
          rem = num_samples_bucket - len_bucket
          ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
  
          # subsample
          ids_bucket = ids_bucket[self.rank::self.num_replicas]
  
          # batching
          for j in range(len(ids_bucket) // self.batch_size):
              batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
              batches.append(batch)
  
      if self.shuffle:
          batch_ids = torch.randperm(len(batches), generator=g).tolist()
          batches = [batches[i] for i in batch_ids]
      self.batches = batches
  
      assert len(self.batches) * self.batch_size == self.num_samples
      return iter(self.batches)
  
    def _bisect(self, x, lo=0, hi=None):
      if hi is None:
          hi = len(self.boundaries) - 1
  
      if hi > lo:
          mid = (hi + lo) // 2
          if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
              return mid
          elif x <= self.boundaries[mid]:
              return self._bisect(x, lo, mid)
          else:
              return self._bisect(x, mid + 1, hi)
      else:
          return -1

    def __len__(self):
        return self.num_samples // self.batch_size
class VitsCollectionDataset(torch.utils.data.Dataset):
    
    def __init__(self,dataset,hop_length=256,rate=16_000,device='cpu') -> None:
        self.dataset = dataset
        self.lengths =(torch.tensor(dataset['secs'])*rate//(2*hop_length)).tolist()
        self.device = device


        
    def __len__(self):
        return self.dataset.num_rows
     
    
    def __getitem__(self, idx):
        return self.dataset[idx]

def  get_dataloader(dir_db_train,feature_extractor,name_db='train',batch_size=8,num_workers=0):
    dataset = DatasetDict.load_from_disk(dir_db_train)
    db_train=VitsCollectionDataset(dataset[name_db])
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model=VitsModel.from_pretrained("facebook/mms-tts-ara").to(device)
    tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara",cache_dir="./")#.to("cuda")
    train_sampler = DistributedBucketSampler(
          db_train,
          batch_size,
          [32,300,400,500,600,700,800,900,1000],
          num_replicas=1,
          rank=0,
          shuffle=True)
    data_collator = DataSetFeaturesCollector(
        tokenizer = tokenizer,
        model = model,
        feature_extractor = feature_extractor,
        forward_attention_mask = True
        )
    train_dataloader = torch.utils.data.DataLoader(
              db_train,
              num_workers=num_workers, shuffle=False, pin_memory=True,
          collate_fn=data_collator, batch_sampler=train_sampler
            )
    return train_dataloader