File size: 7,632 Bytes
2da45ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

import torch
from torch import nn
from typing import  Optional
from .vits_config import VitsConfig
#.............................................

@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels):
    in_act = input_a + input_b
    t_act = torch.tanh(in_act[:, :num_channels, :])
    s_act = torch.sigmoid(in_act[:, num_channels:, :])
    acts = t_act * s_act
    return acts



#.............................................

class VitsWaveNet(torch.nn.Module):
    def __init__(self, config: VitsConfig, num_layers: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.num_layers = num_layers
        self.speaker_embedding_size = config.speaker_embedding_size

        self.in_layers = torch.nn.ModuleList()
        self.res_skip_layers = torch.nn.ModuleList()
        self.dropout = nn.Dropout(config.wavenet_dropout)

        if hasattr(nn.utils.parametrizations, "weight_norm"):
            weight_norm = nn.utils.parametrizations.weight_norm
        else:
            weight_norm = nn.utils.weight_norm

        if config.speaker_embedding_size != 0:
            cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1)
            self.cond_layer = weight_norm(cond_layer, name="weight")

        for i in range(num_layers):
            dilation = config.wavenet_dilation_rate**i
            padding = (config.wavenet_kernel_size * dilation - dilation) // 2
            in_layer = torch.nn.Conv1d(
                in_channels=config.hidden_size,
                out_channels=2 * config.hidden_size,
                kernel_size=config.wavenet_kernel_size,
                dilation=dilation,
                padding=padding,
            )
            in_layer = weight_norm(in_layer, name="weight")
            self.in_layers.append(in_layer)

            # last one is not necessary
            if i < num_layers - 1:
                res_skip_channels = 2 * config.hidden_size
            else:
                res_skip_channels = config.hidden_size

            res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1)
            res_skip_layer = weight_norm(res_skip_layer, name="weight")
            self.res_skip_layers.append(res_skip_layer)

    def forward(self, inputs, padding_mask, global_conditioning=None):
        outputs = torch.zeros_like(inputs)
        num_channels_tensor = torch.IntTensor([self.hidden_size])

        if global_conditioning is not None:
            global_conditioning = self.cond_layer(global_conditioning)

        for i in range(self.num_layers):
            hidden_states = self.in_layers[i](inputs)

            if global_conditioning is not None:
                cond_offset = i * 2 * self.hidden_size
                global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :]
            else:
                global_states = torch.zeros_like(hidden_states)

            acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0])
            acts = self.dropout(acts)

            res_skip_acts = self.res_skip_layers[i](acts)
            if i < self.num_layers - 1:
                res_acts = res_skip_acts[:, : self.hidden_size, :]
                inputs = (inputs + res_acts) * padding_mask
                outputs = outputs + res_skip_acts[:, self.hidden_size :, :]
            else:
                outputs = outputs + res_skip_acts

        return outputs * padding_mask

    def remove_weight_norm(self):
        if self.speaker_embedding_size != 0:
            torch.nn.utils.remove_weight_norm(self.cond_layer)
        for layer in self.in_layers:
            torch.nn.utils.remove_weight_norm(layer)
        for layer in self.res_skip_layers:
            torch.nn.utils.remove_weight_norm(layer)

    def apply_weight_norm(self):
        if hasattr(nn.utils.parametrizations, "weight_norm"):
            weight_norm = nn.utils.parametrizations.weight_norm
        else:
            weight_norm = nn.utils.weight_norm

        if self.speaker_embedding_size != 0:
            weight_norm(self.cond_layer)
        for layer in self.in_layers:
            weight_norm(layer)
        for layer in self.res_skip_layers:
            weight_norm(layer)


#.............................................................................................

class VitsResidualCouplingLayer(nn.Module):
    def __init__(self, config: VitsConfig):
        super().__init__()
        self.half_channels = config.flow_size // 2

        self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
        self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers)
        self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)

    def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
        first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
        hidden_states = self.conv_pre(first_half) * padding_mask
        hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning)
        mean = self.conv_post(hidden_states) * padding_mask
        log_stddev = torch.zeros_like(mean)

        if not reverse:
            second_half = mean + second_half * torch.exp(log_stddev) * padding_mask
            outputs = torch.cat([first_half, second_half], dim=1)
            log_determinant = torch.sum(log_stddev, [1, 2])
            return outputs, log_determinant
        else:
            second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask
            outputs = torch.cat([first_half, second_half], dim=1)
            return outputs, None

    def apply_weight_norm(self):
        nn.utils.weight_norm(self.conv_pre)
        self.wavenet.apply_weight_norm()
        nn.utils.weight_norm(self.conv_post)

    def remove_weight_norm(self):
        nn.utils.remove_weight_norm(self.conv_pre)
        self.wavenet.remove_weight_norm()
        nn.utils.remove_weight_norm(self.conv_post)



#.............................................................................................

class VitsResidualCouplingBlock(nn.Module):
    def __init__(self, config: VitsConfig):
        super().__init__()
        self.flows = nn.ModuleList()
        for _ in range(config.prior_encoder_num_flows):
            self.flows.append(VitsResidualCouplingLayer(config))

    def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
        if not reverse:
            for flow in self.flows:
                inputs, _ = flow(inputs, padding_mask, global_conditioning)
                inputs = torch.flip(inputs, [1])
        else:
            for flow in reversed(self.flows):
                inputs = torch.flip(inputs, [1])
                inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True)
        return inputs

    def apply_weight_norm(self):
        for flow in self.flows:
            flow.apply_weight_norm()

    def remove_weight_norm(self):
        for flow in self.flows:
            flow.remove_weight_norm()

    def resize_speaker_embeddings(self, speaker_embedding_size: Optional[int] = None):
        for flow in self.flows:
            flow.wavenet.speaker_embedding_size = speaker_embedding_size
            hidden_size = flow.wavenet.hidden_size
            num_layers = flow.wavenet.num_layers

            cond_layer = torch.nn.Conv1d(speaker_embedding_size, 2 * hidden_size * num_layers, 1)
            flow.wavenet.cond_layer = nn.utils.weight_norm(cond_layer, name="weight")