Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,632 Bytes
2da45ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import torch
from torch import nn
from typing import Optional
from .vits_config import VitsConfig
#.............................................
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels):
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :num_channels, :])
s_act = torch.sigmoid(in_act[:, num_channels:, :])
acts = t_act * s_act
return acts
#.............................................
class VitsWaveNet(torch.nn.Module):
def __init__(self, config: VitsConfig, num_layers: int):
super().__init__()
self.hidden_size = config.hidden_size
self.num_layers = num_layers
self.speaker_embedding_size = config.speaker_embedding_size
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.dropout = nn.Dropout(config.wavenet_dropout)
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
else:
weight_norm = nn.utils.weight_norm
if config.speaker_embedding_size != 0:
cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1)
self.cond_layer = weight_norm(cond_layer, name="weight")
for i in range(num_layers):
dilation = config.wavenet_dilation_rate**i
padding = (config.wavenet_kernel_size * dilation - dilation) // 2
in_layer = torch.nn.Conv1d(
in_channels=config.hidden_size,
out_channels=2 * config.hidden_size,
kernel_size=config.wavenet_kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < num_layers - 1:
res_skip_channels = 2 * config.hidden_size
else:
res_skip_channels = config.hidden_size
res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1)
res_skip_layer = weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, inputs, padding_mask, global_conditioning=None):
outputs = torch.zeros_like(inputs)
num_channels_tensor = torch.IntTensor([self.hidden_size])
if global_conditioning is not None:
global_conditioning = self.cond_layer(global_conditioning)
for i in range(self.num_layers):
hidden_states = self.in_layers[i](inputs)
if global_conditioning is not None:
cond_offset = i * 2 * self.hidden_size
global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :]
else:
global_states = torch.zeros_like(hidden_states)
acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0])
acts = self.dropout(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.num_layers - 1:
res_acts = res_skip_acts[:, : self.hidden_size, :]
inputs = (inputs + res_acts) * padding_mask
outputs = outputs + res_skip_acts[:, self.hidden_size :, :]
else:
outputs = outputs + res_skip_acts
return outputs * padding_mask
def remove_weight_norm(self):
if self.speaker_embedding_size != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for layer in self.in_layers:
torch.nn.utils.remove_weight_norm(layer)
for layer in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(layer)
def apply_weight_norm(self):
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
else:
weight_norm = nn.utils.weight_norm
if self.speaker_embedding_size != 0:
weight_norm(self.cond_layer)
for layer in self.in_layers:
weight_norm(layer)
for layer in self.res_skip_layers:
weight_norm(layer)
#.............................................................................................
class VitsResidualCouplingLayer(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.half_channels = config.flow_size // 2
self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers)
self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
hidden_states = self.conv_pre(first_half) * padding_mask
hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning)
mean = self.conv_post(hidden_states) * padding_mask
log_stddev = torch.zeros_like(mean)
if not reverse:
second_half = mean + second_half * torch.exp(log_stddev) * padding_mask
outputs = torch.cat([first_half, second_half], dim=1)
log_determinant = torch.sum(log_stddev, [1, 2])
return outputs, log_determinant
else:
second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask
outputs = torch.cat([first_half, second_half], dim=1)
return outputs, None
def apply_weight_norm(self):
nn.utils.weight_norm(self.conv_pre)
self.wavenet.apply_weight_norm()
nn.utils.weight_norm(self.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv_pre)
self.wavenet.remove_weight_norm()
nn.utils.remove_weight_norm(self.conv_post)
#.............................................................................................
class VitsResidualCouplingBlock(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.flows = nn.ModuleList()
for _ in range(config.prior_encoder_num_flows):
self.flows.append(VitsResidualCouplingLayer(config))
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
if not reverse:
for flow in self.flows:
inputs, _ = flow(inputs, padding_mask, global_conditioning)
inputs = torch.flip(inputs, [1])
else:
for flow in reversed(self.flows):
inputs = torch.flip(inputs, [1])
inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True)
return inputs
def apply_weight_norm(self):
for flow in self.flows:
flow.apply_weight_norm()
def remove_weight_norm(self):
for flow in self.flows:
flow.remove_weight_norm()
def resize_speaker_embeddings(self, speaker_embedding_size: Optional[int] = None):
for flow in self.flows:
flow.wavenet.speaker_embedding_size = speaker_embedding_size
hidden_size = flow.wavenet.hidden_size
num_layers = flow.wavenet.num_layers
cond_layer = torch.nn.Conv1d(speaker_embedding_size, 2 * hidden_size * num_layers, 1)
flow.wavenet.cond_layer = nn.utils.weight_norm(cond_layer, name="weight")
|