Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,807 Bytes
2da45ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
import os
import shutil
import tempfile
import numpy as np
import wandb
from transformers import VitsModel
import math
import torch
from accelerate.utils import ProjectConfiguration, is_wandb_available, set_seed
from accelerate import Accelerator, DistributedDataParallelKwargs
from transformers.utils import send_example_telemetry
import logging
import sys
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.trainer_pt_utils import LengthGroupedSampler
from transformers.optimization import get_scheduler
from .data_collator import DataCollatorTTSWithPadding
from .discriminator import VitsDiscriminator
from .feature_extraction import VitsFeatureExtractor
from .plot import plot_alignment_to_numpy, plot_spectrogram_to_numpy
#.............................................
if is_wandb_available():
import wandb
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
logger = logging.getLogger(__name__)
#.............................................
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
real_losses = 0
generated_losses = 0
for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs):
real_loss = torch.mean((1 - disc_real) ** 2)
generated_loss = torch.mean(disc_generated**2)
loss += real_loss + generated_loss
real_losses += real_loss
generated_losses += generated_loss
return loss, real_losses, generated_losses
def feature_loss(feature_maps_real, feature_maps_generated):
loss = 0
for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated):
for real, generated in zip(feature_map_real, feature_map_generated):
real = real.detach()
loss += torch.mean(torch.abs(real - generated))
return loss * 2
def generator_loss(disc_outputs):
total_loss = 0
gen_losses = []
for disc_output in disc_outputs:
disc_output = disc_output
loss = torch.mean((1 - disc_output) ** 2)
gen_losses.append(loss)
total_loss += loss
return total_loss, gen_losses
def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask):
"""
z_p, logs_q: [b, h, t_t]
prior_means, prior_log_variance: [b, h, t_t]
"""
kl = prior_log_variance - posterior_log_variance - 0.5
kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance)
kl = torch.sum(kl * labels_mask)
loss = kl / torch.sum(labels_mask)
return loss
def log_on_trackers(
trackers,
generated_audio,
generated_attn,
generated_spec,
target_spec,
full_generation_waveform,
epoch,
sampling_rate,
):
max_num_samples = min(len(generated_audio), 50)
generated_audio = generated_audio[:max_num_samples]
generated_attn = generated_attn[:max_num_samples]
generated_spec = generated_spec[:max_num_samples]
target_spec = target_spec[:max_num_samples]
for tracker in trackers:
if tracker.name == "tensorboard":
for cpt, audio in enumerate(generated_audio):
tracker.writer.add_audio(f"train_step_audio_{cpt}", audio[None, :], epoch, sample_rate=sampling_rate)
for cpt, audio in enumerate(full_generation_waveform):
tracker.writer.add_audio(
f"full_generation_sample{cpt}", audio[None, :], epoch, sample_rate=sampling_rate
)
tracker.writer.add_images("alignements", np.stack(generated_attn), dataformats="NHWC")
tracker.writer.add_images("spectrogram", np.stack(generated_spec), dataformats="NHWC")
tracker.writer.add_images("target spectrogram", np.stack(target_spec), dataformats="NHWC")
elif tracker.name == "wandb":
# wandb can only loads 100 audios per step
tracker.log(
{
"alignments": [wandb.Image(attn, caption=f"Audio epoch {epoch}") for attn in generated_attn],
"spectrogram": [wandb.Image(spec, caption=f"Audio epoch {epoch}") for spec in generated_spec],
"target spectrogram": [wandb.Image(spec, caption=f"Audio epoch {epoch}") for spec in target_spec],
"train generated audio": [
wandb.Audio(
audio[0],
caption=f"Audio during train step epoch {epoch}",
sample_rate=sampling_rate,
)
for audio in generated_audio
],
"full generations samples": [
wandb.Audio(w, caption=f"Full generation sample {epoch}", sample_rate=sampling_rate)
for w in full_generation_waveform
],
}
)
else:
logger.warn(f"audio logging not implemented for {tracker.name}")
def compute_val_metrics_and_losses(
val_losses,
accelerator,
model_outputs,
mel_scaled_generation,
mel_scaled_target,
batch_size,
compute_clap_similarity=False,
):
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
loss_kl = kl_loss(
model_outputs.prior_latents,
model_outputs.posterior_log_variances,
model_outputs.prior_means,
model_outputs.prior_log_variances,
model_outputs.labels_padding_mask,
)
losses_mel_kl = loss_mel + loss_kl
losses = torch.stack([loss_mel, loss_kl, losses_mel_kl])
losses = accelerator.gather(losses.repeat(batch_size, 1)).mean(0)
for key, loss in zip(["val_loss_mel", "val_loss_kl", "val_loss_mel_kl"], losses):
val_losses[key] = val_losses.get(key, 0) + loss.item()
return val_losses
#.............................................
def vits_trainin(
model,
tokenizer,
model_args,
data_args,
training_args,
train_dataset,
eval_dataset,
):
send_example_telemetry("run_vits_finetuning", model_args, data_args)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
# datasets.utils.logging.set_verbosity(log_level)
# transformers.utils.logging.set_verbosity(log_level)
# transformers.utils.logging.enable_default_handler()
# transformers.utils.logging.enable_explicit_format()
# # logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# if is_main_process(training_args.local_rank):
# transformers.utils.logging.set_verbosity_info()
set_seed(training_args.seed)
config = model.config
feature_extractor = VitsFeatureExtractor()
forward_attention_mask = True
with training_args.main_process_first(desc="apply_weight_norm"):
# apply weight norms
model.decoder.apply_weight_norm()
for flow in model.flow.flows:
torch.nn.utils.weight_norm(flow.conv_pre)
torch.nn.utils.weight_norm(flow.conv_post)
with training_args.main_process_first():
# only the main process saves them
if is_main_process(training_args.local_rank):
# save feature extractor, tokenizer and config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
data_collator = DataCollatorTTSWithPadding(
tokenizer=tokenizer,
feature_extractor=feature_extractor,
forward_attention_mask=forward_attention_mask,
)
with training_args.main_process_first():
input_str = data_args.full_generation_sample_text
full_generation_sample = tokenizer(input_str, return_tensors="pt")
project_name = data_args.project_name
logging_dir = os.path.join(training_args.output_dir, training_args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=training_args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
log_with=training_args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[ddp_kwargs],
)
per_device_train_batch_size = (
training_args.per_device_train_batch_size if training_args.per_device_train_batch_size else 1
)
total_batch_size = (
per_device_train_batch_size * accelerator.num_processes * training_args.gradient_accumulation_steps
)
num_speakers = model.config.num_speakers
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
train_dataloader = None
if training_args.do_train:
sampler = (
LengthGroupedSampler(
batch_size=per_device_train_batch_size,
dataset=train_dataset,
lengths=train_dataset["tokens_input_length"],
)
if training_args.group_by_length
else None
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=False,#not training_args.group_by_length,
collate_fn=data_collator,
batch_size=training_args.per_device_train_batch_size,
num_workers=training_args.dataloader_num_workers,
sampler=sampler,
)
eval_dataloader = None
if training_args.do_eval:
eval_sampler = (
LengthGroupedSampler(
batch_size=training_args.per_device_eval_batch_size,
dataset=eval_dataset,
lengths=eval_dataset["tokens_input_length"],
)
if training_args.group_by_length
else None
)
eval_dataloader = torch.utils.data.DataLoader(
eval_dataset,
shuffle=False,
collate_fn=data_collator,
batch_size=training_args.per_device_eval_batch_size,
num_workers=training_args.dataloader_num_workers,
sampler=eval_sampler,
)
model_segment_size = model.segment_size
config_segment_size = model.config.segment_size
sampling_rate = model.config.sampling_rate
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
if training_args.max_steps == -1:
training_args.max_steps = training_args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
if overrode_max_train_steps:
training_args.max_steps = int(training_args.num_train_epochs * num_update_steps_per_epoch)
# Afterwards we recalculate our number of training epochs
training_args.num_train_epochs = math.ceil(training_args.max_steps / num_update_steps_per_epoch)
# hack to be able to train on multiple device
with tempfile.TemporaryDirectory() as tmpdirname:
model.discriminator.save_pretrained(tmpdirname)
discriminator = VitsDiscriminator.from_pretrained(tmpdirname)
for disc in discriminator.discriminators:
disc.apply_weight_norm()
del model.discriminator
# init gen_optimizer, gen_lr_scheduler, disc_optimizer, dics_lr_scheduler
gen_optimizer = torch.optim.AdamW(
model.parameters(),
training_args.learning_rate,
betas=[training_args.adam_beta1, training_args.adam_beta2],
eps=training_args.adam_epsilon,
)
disc_optimizer = torch.optim.AdamW(
discriminator.parameters(),
training_args.learning_rate,
betas=[training_args.adam_beta1, training_args.adam_beta2],
eps=training_args.adam_epsilon,
)
num_warmups_steps = training_args.get_warmup_steps(training_args.num_train_epochs * accelerator.num_processes)
num_training_steps = training_args.num_train_epochs * accelerator.num_processes
gen_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
gen_optimizer, gamma=training_args.lr_decay, last_epoch=-1
)
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1
)
# Prepare everything with our `accelerator`.
(
model,
discriminator,
gen_optimizer,
gen_lr_scheduler,
disc_optimizer,
disc_lr_scheduler,
train_dataloader,
eval_dataloader,
) = accelerator.prepare(
model,
discriminator,
gen_optimizer,
gen_lr_scheduler,
disc_optimizer,
disc_lr_scheduler,
train_dataloader,
eval_dataloader,
)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = training_args.to_sanitized_dict()
accelerator.init_trackers(project_name, tracker_config)
# Train!
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {training_args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {training_args.max_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if training_args.resume_from_checkpoint:
if training_args.resume_from_checkpoint != "latest":
path = os.path.basename(training_args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(training_args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{training_args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
training_args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(training_args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
#.......................loop training............................
for epoch in range(first_epoch, training_args.num_train_epochs):
# keep track of train losses
train_losses = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
disc_lr_scheduler.step()
gen_lr_scheduler.step()
for step, batch in enumerate(train_dataloader):
print(f"TRAINIG - batch {step}, process{accelerator.process_index}, waveform {(batch['waveform'].shape)}, tokens {(batch['input_ids'].shape)}... ")
with accelerator.accumulate(model, discriminator):
# forward through model
model_outputs = model(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"],
encoder_output = batch['text_encoder_output'],
return_dict=True,
monotonic_alignment_function=None,
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = model.slice_segments(mel_scaled_labels, model_outputs.ids_slice, model_segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(
model_outputs.waveform.squeeze(1)
)[1]
target_waveform = batch["waveform"].transpose(1, 2)
target_waveform = model.slice_segments(
target_waveform, model_outputs.ids_slice * feature_extractor.hop_length, config_segment_size
)
# -----------------------
# Train Discriminator
# -----------------------
discriminator_target, _ = discriminator(target_waveform)
discriminator_candidate, _ = discriminator(model_outputs.waveform.detach())
loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss(
discriminator_target, discriminator_candidate
)
# backpropagate
accelerator.backward(loss_disc * training_args.weight_disc)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(discriminator.parameters(), training_args.max_grad_norm)
disc_optimizer.step()
if not training_args.do_step_schedule_per_epoch:
disc_lr_scheduler.step()
disc_optimizer.zero_grad()
# -----------------------
# Train Generator
# -----------------------
_, fmaps_target = discriminator(target_waveform)
discriminator_candidate, fmaps_candidate = discriminator(model_outputs.waveform)
loss_duration = torch.sum(model_outputs.log_duration)
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
loss_kl = kl_loss(
model_outputs.prior_latents,
model_outputs.posterior_log_variances,
model_outputs.prior_means,
model_outputs.prior_log_variances,
model_outputs.labels_padding_mask,
)
loss_fmaps = feature_loss(fmaps_target, fmaps_candidate)
loss_gen, losses_gen = generator_loss(discriminator_candidate)
total_generator_loss = (
loss_duration * training_args.weight_duration
+ loss_mel * training_args.weight_mel
+ loss_kl * training_args.weight_kl
+ loss_fmaps * training_args.weight_fmaps
+ loss_gen * training_args.weight_gen
)
# backpropagate
accelerator.backward(total_generator_loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), training_args.max_grad_norm)
gen_optimizer.step()
if not training_args.do_step_schedule_per_epoch:
gen_lr_scheduler.step()
gen_optimizer.zero_grad()
# update and gather losses
losses = torch.stack(
[
# for fair comparison, don't use weighted loss
loss_duration + loss_mel + loss_kl + loss_fmaps + loss_gen,
loss_duration,
loss_mel,
loss_kl,
loss_fmaps,
loss_gen,
loss_disc,
loss_real_disc,
loss_fake_disc,
]
)
losses = accelerator.gather(losses.repeat(per_device_train_batch_size, 1)).mean(0)
train_losses = [
l + losses[i].item() / training_args.gradient_accumulation_steps
for (i, l) in enumerate(train_losses)
]
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
(
train_summed_losses,
train_loss_duration,
train_loss_mel,
train_loss_kl,
train_loss_fmaps,
train_loss_gen,
train_loss_disc,
train_loss_real_disc,
train_loss_fake_disc,
) = train_losses
global_step += 1
accelerator.log(
{
"train_summed_losses": train_summed_losses,
"train_loss_disc": train_loss_disc,
"train_loss_real_disc": train_loss_real_disc,
"train_loss_fake_disc": train_loss_fake_disc,
"train_loss_duration": train_loss_duration,
"train_loss_mel": train_loss_mel,
"train_loss_kl": train_loss_kl,
"train_loss_fmaps": train_loss_fmaps,
"train_loss_gen": train_loss_gen,
"lr": disc_lr_scheduler.get_last_lr()[0],
},
step=global_step,
)
train_losses = [0.0 for _ in train_losses]
if global_step % training_args.save_steps == 0:
if accelerator.is_main_process:
# _before_ saving state, check if this save would set us over the `save_total_limit`
if training_args.save_total_limit is not None:
checkpoints = os.listdir(training_args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `save_total_limit - 1` checkpoints
if len(checkpoints) >= training_args.save_total_limit:
num_to_remove = len(checkpoints) - training_args.save_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(training_args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(training_args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {
"step_loss": total_generator_loss.detach().item(),
"lr": disc_lr_scheduler.get_last_lr()[0],
"step_loss_duration": loss_duration.detach().item(),
"step_loss_mel": loss_mel.detach().item(),
"step_loss_kl": loss_kl.detach().item(),
"step_loss_fmaps": loss_fmaps.detach().item(),
"step_loss_gen": loss_gen.detach().item(),
"step_loss_disc": loss_disc.detach().item(),
"step_loss_real_disc": loss_real_disc.detach().item(),
"step_loss_fake_disc": loss_fake_disc.detach().item(),
}
if global_step >= training_args.max_steps:
break
eval_steps = training_args.eval_steps if training_args.eval_steps else 1
do_eval = training_args.do_eval and (global_step % eval_steps == 0) and accelerator.sync_gradients
if do_eval:
logger.info("Running validation... ")
generated_audio = []
generated_attn = []
generated_spec = []
target_spec = []
val_losses = {}
for step, batch in enumerate(eval_dataloader):
print(
f"VALIDATION - batch {step}, process{accelerator.process_index}, waveform {(batch['waveform'].shape)}, tokens {(batch['input_ids'].shape)}... "
)
with torch.no_grad():
model_outputs_train = model(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"],
encoder_output = batch['text_encoder_output'],
return_dict=True,
monotonic_alignment_function=None,
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = model.slice_segments(
mel_scaled_labels, model_outputs_train.ids_slice, model_segment_size
)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(
model_outputs_train.waveform.squeeze(1)
)[1]
val_losses = compute_val_metrics_and_losses(
val_losses,
accelerator,
model_outputs_train,
mel_scaled_generation,
mel_scaled_target,
per_device_train_batch_size,
compute_clap_similarity=False,
)
print(f"VALIDATION - batch {step}, process{accelerator.process_index}, PADDING AND GATHER... ")
specs = feature_extractor._torch_extract_fbank_features(model_outputs_train.waveform.squeeze(1))[0]
padded_attn, specs, target_specs = accelerator.pad_across_processes(
[model_outputs_train.attn.squeeze(1), specs, batch["labels"]], dim=1
)
padded_attn, specs, target_specs = accelerator.pad_across_processes(
[padded_attn, specs, target_specs], dim=2
)
generated_train_waveform, padded_attn, specs, target_specs = accelerator.gather_for_metrics(
[model_outputs_train.waveform, padded_attn, specs, target_specs]
)
if accelerator.is_main_process:
with torch.no_grad():
speaker_id = None if num_speakers < 2 else list(range(min(5, num_speakers)))
full_generation = model(**full_generation_sample.to(model.device), speaker_id=speaker_id)
generated_audio.append(generated_train_waveform.cpu())
generated_attn.append(padded_attn.cpu())
generated_spec.append(specs.cpu())
target_spec.append(target_specs.cpu())
logger.info("Validation inference done, now evaluating... ")
if accelerator.is_main_process:
generated_audio = [audio.numpy() for audio_batch in generated_audio for audio in audio_batch]
generated_attn = [
plot_alignment_to_numpy(attn.numpy()) for attn_batch in generated_attn for attn in attn_batch
]
generated_spec = [
plot_spectrogram_to_numpy(attn.numpy()) for attn_batch in generated_spec for attn in attn_batch
]
target_spec = [
plot_spectrogram_to_numpy(attn.numpy()) for attn_batch in target_spec for attn in attn_batch
]
full_generation_waveform = full_generation.waveform.cpu().numpy()
accelerator.log(val_losses, step=global_step)
log_on_trackers(
accelerator.trackers,
generated_audio,
generated_attn,
generated_spec,
target_spec,
full_generation_waveform,
epoch,
sampling_rate,
)
logger.info("Validation finished... ")
accelerator.wait_for_everyone()
accelerator.wait_for_everyone()
if accelerator.is_main_process:
epoch = training_args.num_train_epochs if training_args.num_train_epochs else 1
eval_steps = training_args.eval_steps if training_args.eval_steps else 1
# Run a final round of inference.
do_eval = training_args.do_eval
if do_eval:
logger.info("Running final validation... ")
generated_audio = []
generated_attn = []
generated_spec = []
target_spec = []
val_losses = {}
for step, batch in enumerate(eval_dataloader):
print(
f"VALIDATION - batch {step}, process{accelerator.process_index}, waveform {(batch['waveform'].shape)}, tokens {(batch['input_ids'].shape)}... "
)
with torch.no_grad():
model_outputs_train = model(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"],
encoder_output = batch['text_encoder_output'],
return_dict=True,
monotonic_alignment_function=None,
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = model.slice_segments(
mel_scaled_labels, model_outputs_train.ids_slice, model_segment_size
)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(
model_outputs_train.waveform.squeeze(1)
)[1]
val_losses = compute_val_metrics_and_losses(
val_losses,
accelerator,
model_outputs_train,
mel_scaled_generation,
mel_scaled_target,
per_device_train_batch_size,
compute_clap_similarity=False,
)
specs = feature_extractor._torch_extract_fbank_features(model_outputs_train.waveform.squeeze(1))[0]
padded_attn, specs, target_specs = accelerator.pad_across_processes(
[model_outputs_train.attn.squeeze(1), specs, batch["labels"]], dim=1
)
padded_attn, specs, target_specs = accelerator.pad_across_processes(
[padded_attn, specs, target_specs], dim=2
)
generated_train_waveform, padded_attn, specs, target_specs = accelerator.gather_for_metrics(
[model_outputs_train.waveform, padded_attn, specs, target_specs]
)
if accelerator.is_main_process:
with torch.no_grad():
speaker_id = None if num_speakers < 2 else list(range(min(5, num_speakers)))
full_generation = model(**full_generation_sample.to(model.device), speaker_id=speaker_id)
generated_audio.append(generated_train_waveform.cpu())
generated_attn.append(padded_attn.cpu())
generated_spec.append(specs.cpu())
target_spec.append(target_specs.cpu())
logger.info("Validation inference done, now evaluating... ")
if accelerator.is_main_process:
generated_audio = [audio.numpy() for audio_batch in generated_audio for audio in audio_batch]
generated_attn = [
plot_alignment_to_numpy(attn.numpy()) for attn_batch in generated_attn for attn in attn_batch
]
generated_spec = [
plot_spectrogram_to_numpy(attn.numpy()) for attn_batch in generated_spec for attn in attn_batch
]
target_spec = [
plot_spectrogram_to_numpy(attn.numpy()) for attn_batch in target_spec for attn in attn_batch
]
full_generation_waveform = full_generation.waveform.cpu().numpy()
log_on_trackers(
accelerator.trackers,
generated_audio,
generated_attn,
generated_spec,
target_spec,
full_generation_waveform,
epoch,
sampling_rate,
)
accelerator.log(val_losses, step=global_step)
logger.info("Validation finished... ")
accelerator.wait_for_everyone()
# unwrap, save and push final model
model = accelerator.unwrap_model(model)
discriminator = accelerator.unwrap_model(discriminator)
model.discriminator = discriminator
# add weight norms
for disc in model.discriminator.discriminators:
disc.remove_weight_norm()
model.decoder.remove_weight_norm()
for flow in model.flow.flows:
torch.nn.utils.remove_weight_norm(flow.conv_pre)
torch.nn.utils.remove_weight_norm(flow.conv_post)
model.save_pretrained(training_args.output_dir)
if training_args.push_to_hub:
VitsModel.from_pretrained(training_args.output_dir).push_to_hub(training_args.hub_model_id)
accelerator.end_training()
logger.info("***** Training / Inference Done *****")
#............................................................................... |