Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
GK=0 | |
from transformers import AutoTokenizer | |
import torch | |
import os | |
from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss | |
import VitsModelSplit.monotonic_align as monotonic_align | |
from VitsModelSplit.Vits_models_only_decoder import Vits_models_only_decoder | |
token=os.environ.get("key_") | |
# import VitsModelSplit.monotonic_align as monotonic_align | |
from IPython.display import clear_output | |
from transformers import set_seed | |
import wandb | |
import logging | |
import copy | |
import torch | |
import numpy as np | |
import torch | |
from datasets import DatasetDict,Dataset | |
import os | |
from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss | |
from VitsModelSplit.PosteriorDecoderModel import PosteriorDecoderModel | |
from VitsModelSplit.feature_extraction import VitsFeatureExtractor | |
from VitsModelSplit.vits_models_only_decoder imports Vits_models_only_decoder | |
from transformers import AutoTokenizer, HfArgumentParser, set_seed | |
from VitsModelSplit.Arguments import DataTrainingArguments, ModelArguments, VITSTrainingArguments | |
from VitsModelSplit.dataset_features_collector import FeaturesCollectionDataset | |
from torch.cuda.amp import autocast, GradScaler | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# sgl=get_state_grad_loss(k1=True,#generator=False, | |
# discriminator=False, | |
# duration=False | |
# ) | |
class model_onxx: | |
def __init__(self): | |
self.model=None | |
self.n_onxx="" | |
self.storage_dir = "uploads" | |
pass | |
def function_change(self,n_model,token,n_onxx,choice): | |
if choice=="decoder": | |
V=self.convert_to_onnx_only_decoder(n_model,token,n_onxx) | |
elif choice=="all only decoder": | |
V=self.convert_to_onnx_only_decoder(n_model,token,n_onxx) | |
else: | |
V=self.convert_to_onnx_only_decoder(n_model,token,n_onxx) | |
return V | |
def install_model(self,n_model,token,n_onxx): | |
self.n_onxx=n_onxx | |
self.model= VitsModel.from_pretrained(n_model,token=token) | |
return self.model | |
def convert_model_decoder_onxx(self,n_model,token,namemodelonxx): | |
self.model= VitsModel.from_pretrained(n_model,token=token) | |
x=f"{namemodelonxx}.onnx" | |
return x | |
def convert_to_onnx_only_decoder(self,n_model,token,namemodelonxx): | |
model=VitsModel.from_pretrained(n_model,token=token) | |
x=f"{namemodelonxx}.onnx" | |
if not os.path.exists("uploads"): | |
os.makedirs(storage_dir) | |
file_path = os.path.join("uploads",x) | |
vocab_size = model.text_encoder.embed_tokens.weight.size(0) | |
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long) | |
torch.onnx.export( | |
model, # The model to be exported | |
example_input, # Example input for the model | |
file_path, # The filename for the exported ONNX model | |
opset_version=11, # Use an appropriate ONNX opset version | |
input_names=['input'], # Name of the input layer | |
output_names=['output'], # Name of the output layer | |
dynamic_axes={ | |
'input': {0: 'batch_size', 1: 'sequence_length'}, # Dynamic axes for variable-length inputs | |
'output': {0: 'batch_size'} | |
} | |
) | |
return file_path | |
def convert_to_onnx_all(self,n_model,token ,namemodelonxx): | |
model=VitsModel.from_pretrained(n_model,token=token) | |
x=f"{namemodelonxx}.onnx" | |
vocab_size = model.text_encoder.embed_tokens.weight.size(0) | |
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long) | |
torch.onnx.export( | |
model, # The model to be exported | |
example_input, # Example input for the model | |
x, # The filename for the exported ONNX model | |
opset_version=11, # Use an appropriate ONNX opset version | |
input_names=['input'], # Name of the input layer | |
output_names=['output'], # Name of the output layer | |
dynamic_axes={ | |
'input': {0: 'batch_size', 1: 'sequence_length'}, # Dynamic axes for variable-length inputs | |
'output': {0: 'batch_size'} | |
} | |
) | |
return x | |
def starrt(self): | |
#with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
text_n_model=gr.Textbox(label="name model") | |
text_n_token=gr.Textbox(label="token") | |
text_n_onxx=gr.Textbox(label="name model onxx") | |
choice = gr.Dropdown(choices=["decoder", "all anoly decoder", "All"], label="My Dropdown") | |
with gr.Column(): | |
btn=gr.Button("convert") | |
label=gr.Label("return name model onxx") | |
btn.click(self.function_change,[text_n_model,text_n_token,text_n_onxx,choice],[label]) | |
#choice.change(fn=function_change, inputs=choice, outputs=label) | |
#return demo | |
c=model_onxx() | |
#cc=c.starrt() | |
############################################################### | |
Lst=['input_ids', | |
'attention_mask', | |
'waveform', | |
'labels', | |
'labels_attention_mask', | |
'mel_scaled_input_features'] | |
def covert_cuda_batch(d): | |
return d | |
for key in Lst: | |
d[key]=d[key].cuda(non_blocking=True) | |
# for key in d['text_encoder_output']: | |
# d['text_encoder_output'][key]=d['text_encoder_output'][key].cuda(non_blocking=True) | |
# for key in d['posterior_encode_output']: | |
# d['posterior_encode_output'][key]=d['posterior_encode_output'][key].cuda(non_blocking=True) | |
return d | |
def generator_loss(disc_outputs): | |
total_loss = 0 | |
gen_losses = [] | |
for disc_output in disc_outputs: | |
disc_output = disc_output | |
loss = torch.mean((1 - disc_output) ** 2) | |
gen_losses.append(loss) | |
total_loss += loss | |
return total_loss, gen_losses | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
real_losses = 0 | |
generated_losses = 0 | |
for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs): | |
real_loss = torch.mean((1 - disc_real) ** 2) | |
generated_loss = torch.mean(disc_generated**2) | |
loss += real_loss + generated_loss | |
real_losses += real_loss | |
generated_losses += generated_loss | |
return loss, real_losses, generated_losses | |
def feature_loss(feature_maps_real, feature_maps_generated): | |
loss = 0 | |
for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated): | |
for real, generated in zip(feature_map_real, feature_map_generated): | |
real = real.detach() | |
loss += torch.mean(torch.abs(real - generated)) | |
return loss * 2 | |
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
""" | |
z_p, logs_q: [b, h, t_t] | |
m_p, logs_p: [b, h, t_t] | |
""" | |
z_p = z_p.float() | |
logs_q = logs_q.float() | |
m_p = m_p.float() | |
logs_p = logs_p.float() | |
z_mask = z_mask.float() | |
kl = logs_p - logs_q - 0.5 | |
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p) | |
kl = torch.sum(kl * z_mask) | |
l = kl / torch.sum(z_mask) | |
return l | |
#............................................. | |
# def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask): | |
# kl = prior_log_variance - posterior_log_variance - 0.5 | |
# kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance) | |
# kl = torch.sum(kl * labels_mask) | |
# loss = kl / torch.sum(labels_mask) | |
# return loss | |
def get_state_grad_loss(k1=True, | |
mel=True, | |
duration=True, | |
generator=True, | |
discriminator=True): | |
return {'k1':k1,'mel':mel,'duration':duration,'generator':generator,'discriminator':discriminator} | |
def clip_grad_value_(parameters, clip_value, norm_type=2): | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
norm_type = float(norm_type) | |
if clip_value is not None: | |
clip_value = float(clip_value) | |
total_norm = 0 | |
for p in parameters: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm.item() ** norm_type | |
if clip_value is not None: | |
p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
total_norm = total_norm ** (1. / norm_type) | |
return total_norm | |
def get_embed_speaker(self,speaker_id): | |
if self.config.num_speakers > 1 and speaker_id is not None: | |
if isinstance(speaker_id, int): | |
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) | |
elif isinstance(speaker_id, (list, tuple, np.ndarray)): | |
speaker_id = torch.tensor(speaker_id, device=self.device) | |
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item(): | |
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") | |
return self.embed_speaker(speaker_id).unsqueeze(-1) | |
else: | |
return None | |
def get_data_loader(train_dataset_dirs,eval_dataset_dir,full_generation_dir,device): | |
ctrain_datasets=[] | |
for dataset_dir ,id_sp in train_dataset_dirs: | |
train_dataset = FeaturesCollectionDataset(dataset_dir = os.path.join(dataset_dir,'train'), | |
device = device | |
) | |
ctrain_datasets.append((train_dataset,id_sp)) | |
eval_dataset = None | |
eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
device = device | |
) | |
full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
device = device) | |
return ctrain_datasets,eval_dataset,full_generation_dataset | |
global_step=0 | |
def train_step(batch,models=[],optimizers=[], training_args=None,tools=[]): | |
self,discriminator=models | |
optimizer,disc_optimizer,scaler=optimizers | |
feature_extractor,maf,dict_state_grad_loss=tools | |
with autocast(enabled=training_args.fp16): | |
speaker_embeddings=get_embed_speaker(self,batch["speaker_id"]) | |
waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask = self.forward_train( | |
input_ids=batch["input_ids"], | |
attention_mask=batch["attention_mask"], | |
labels=batch["labels"], | |
labels_attention_mask=batch["labels_attention_mask"], | |
text_encoder_output =None , | |
posterior_encode_output=None , | |
return_dict=True, | |
monotonic_alignment_function=maf, | |
speaker_embeddings=speaker_embeddings | |
) | |
mel_scaled_labels = batch["mel_scaled_input_features"] | |
mel_scaled_target = self.slice_segments(mel_scaled_labels, ids_slice,self.segment_size) | |
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(waveform.squeeze(1))[1] | |
target_waveform = batch["waveform"].transpose(1, 2) | |
target_waveform = self.slice_segments( | |
target_waveform, | |
ids_slice * feature_extractor.hop_length, | |
self.config.segment_size | |
) | |
discriminator_target, fmaps_target = discriminator(target_waveform) | |
discriminator_candidate, fmaps_candidate = discriminator(waveform.detach()) | |
with autocast(enabled=False): | |
if dict_state_grad_loss['discriminator']: | |
loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss( | |
discriminator_target, discriminator_candidate | |
) | |
loss_dd = loss_disc# + loss_real_disc + loss_fake_disc | |
# loss_dd.backward() | |
disc_optimizer.zero_grad() | |
scaler.scale(loss_dd).backward() | |
scaler.unscale_(disc_optimizer ) | |
grad_norm_d = clip_grad_value_(discriminator.parameters(), None) | |
scaler.step(disc_optimizer) | |
loss_des=grad_norm_d | |
with autocast(enabled=training_args.fp16): | |
# backpropagate | |
discriminator_target, fmaps_target = discriminator(target_waveform) | |
discriminator_candidate, fmaps_candidate = discriminator(waveform.detach()) | |
with autocast(enabled=False): | |
if dict_state_grad_loss['k1']: | |
loss_kl = kl_loss( | |
prior_latents, | |
posterior_log_variances, | |
prior_means, | |
prior_log_variances, | |
labels_padding_mask, | |
) | |
loss_kl=loss_kl*training_args.weight_kl | |
loss_klall=loss_kl.detach().item() | |
#if displayloss['loss_kl']>=0: | |
# loss_kl.backward() | |
if dict_state_grad_loss['mel']: | |
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)*training_args.weight_mel | |
loss_melall= loss_mel.detach().item() | |
# train_losses_sum = train_losses_sum + displayloss['loss_mel'] | |
# if displayloss['loss_mel']>=0: | |
# loss_mel.backward() | |
if dict_state_grad_loss['duration']: | |
loss_duration=torch.sum(log_duration)*training_args.weight_duration | |
loss_durationsall=loss_duration.detach().item() | |
# if displayloss['loss_duration']>=0: | |
# loss_duration.backward() | |
if dict_state_grad_loss['generator']: | |
loss_fmaps = feature_loss(fmaps_target, fmaps_candidate) | |
loss_gen, losses_gen = generator_loss(discriminator_candidate) | |
loss_gen=loss_gen * training_args.weight_gen | |
# loss_gen.backward(retain_graph=True) | |
loss_fmaps=loss_fmaps * training_args.weight_fmaps | |
# loss_fmaps.backward(retain_graph=True) | |
total_generator_loss = ( | |
loss_duration | |
+ loss_mel | |
+ loss_kl | |
+ loss_fmaps | |
+ loss_gen | |
) | |
# total_generator_loss.backward() | |
optimizer.zero_grad() | |
scaler.scale(total_generator_loss).backward() | |
scaler.unscale_(optimizer) | |
grad_norm_g = clip_grad_value_(self.parameters(), None) | |
scaler.step(optimizer) | |
scaler.update() | |
loss_gen=grad_norm_g | |
return loss_gen,loss_des,loss_durationsall,loss_melall,loss_klall | |
def train_epoch(obtrainer,index_db=0,epoch=0,idspeakers=[],full_generation_sample_index=-1): | |
train_losses_sum = 0 | |
loss_genall=0 | |
loss_desall=0 | |
loss_durationsall=0 | |
loss_melall=0 | |
loss_klall=0 | |
loss_fmapsall=0 | |
start_speeker,end_speeker=idspeakers | |
datatrain=obtrainer.DataSets['train'][index_db] | |
lr_scheduler,disc_lr_scheduler=obtrainer.lr_schedulers | |
lr_scheduler.step() | |
disc_lr_scheduler.step() | |
train_dataset,speaker_id=datatrain | |
print(f" Num Epochs = {epoch}, speaker_id DB ={speaker_id}") | |
num_div_proc=int(len(train_dataset)/10)+1 | |
print(' -process traning : [',end='') | |
full_generation_sample =obtrainer.DataSets['full_generation'][full_generation_sample_index] | |
for step, batch in enumerate(train_dataset): | |
loss_gen,loss_des,loss_durationsa,loss_mela,loss_kl=train_step(batch, | |
models=obtrainer.models, | |
optimizers=obtrainer.optimizers, | |
training_args=obtrainer.training_args, | |
tools=obtrainer.tools) | |
loss_genall+=loss_gen | |
loss_desall+=loss_des | |
loss_durationsall+=loss_durationsa | |
loss_melall+=loss_mela | |
loss_klall+=loss_kl | |
obtrainer.global_step +=1 | |
if step%num_div_proc==0: | |
print('==',end='') | |
# validation | |
do_eval = obtrainer.training_args.do_eval and (obtrainer.global_step % obtrainer.training_args.eval_steps == 0) | |
if do_eval: | |
speaker_id_c=int(torch.randint(start_speeker,end_speeker,size=(1,))[0]) | |
model=obtrainer.models[0] | |
with torch.no_grad(): | |
full_generation =model.forward( | |
input_ids =full_generation_sample["input_ids"], | |
attention_mask=full_generation_sample["attention_mask"], | |
speaker_id=speaker_id_c | |
) | |
full_generation_waveform = full_generation.waveform.cpu().numpy() | |
wandb.log({ | |
"full generations samples": [ | |
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000) | |
for w in full_generation_waveform],}) | |
step+=1 | |
# wandb.log({"train_losses":loss_melall}) | |
wandb.log({"loss_gen":loss_genall/step}) | |
wandb.log({"loss_des":loss_desall/step}) | |
wandb.log({"loss_duration":loss_durationsall/step}) | |
wandb.log({"loss_mel":loss_melall/step}) | |
wandb.log({f"loss_kl_db{speaker_id}":loss_klall/step}) | |
print(']',end='') | |
def load_training_args(path): | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments)) | |
json_file = os.path.abspath(path) | |
model_args, data_args, training_args = parser.parse_json_file(json_file = json_file) | |
return training_args | |
def load_tools(): | |
feature_extractor = VitsFeatureExtractor() | |
dict_state_grad_loss=get_state_grad_loss() | |
return feature_extractor,monotonic_align.maximum_path,dict_state_grad_loss | |
class TrinerModelVITS: | |
KC=0 | |
def __init__(self,dir_model="", | |
path_training_args="", | |
train_dataset_dirs=[], | |
eval_dataset_dir="", | |
full_generation_dir="", | |
token="", | |
device="cpu"): | |
self.device=device | |
self.dir_model=dir_model | |
self.path_training_args=path_training_args | |
self.stute_mode=False | |
self.token=token | |
self.load_dataset(train_dataset_dirs,eval_dataset_dir,full_generation_dir) | |
self.epoch_count=0 | |
self.global_step=0 | |
self.len_dataset=len(self.DataSets['train']) | |
self.load_model() | |
self.init_wandb() | |
# self.training_args=load_training_args(self.path_training_args) | |
# training_args= self.training_args | |
scaler = GradScaler(enabled=True) | |
# for disc in self.model.discriminator.discriminators: | |
# disc.apply_weight_norm() | |
# self.model.decoder.apply_weight_norm() | |
# # torch.nn.utils.weight_norm(self.decoder.conv_pre) | |
# # torch.nn.utils.weight_norm(self.decoder.conv_post) | |
# for flow in self.model.flow.flows: | |
# torch.nn.utils.weight_norm(flow.conv_pre) | |
# torch.nn.utils.weight_norm(flow.conv_post) | |
discriminator = self.model.discriminator | |
self.model.discriminator = None | |
self.models=(self.model,discriminator) | |
optimizer = torch.optim.AdamW( | |
self.model.parameters(), | |
2e-4, | |
betas=[0.8, 0.99], | |
# eps=training_args.adam_epsilon, | |
) | |
# Hack to be able to train on multiple device | |
disc_optimizer = torch.optim.AdamW( | |
discriminator.parameters(), | |
2e-4, | |
betas=[0.8, 0.99], | |
# eps=training_args.adam_epsilon, | |
) | |
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
optimizer,gamma=0.999875, last_epoch=-1 | |
) | |
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
disc_optimizer, gamma=0.999875,last_epoch=-1 | |
) | |
# self.models=(self.model,discriminator) | |
self.optimizers=(optimizer,disc_optimizer,scaler) | |
self.lr_schedulers=(lr_scheduler,disc_lr_scheduler) | |
self.tools=load_tools() | |
self.stute_mode=True | |
print(self.lr_schedulers) | |
def init_Starting(self): | |
print('init_Starting') | |
self.training_args=load_training_args(self.path_training_args) | |
self.stute_mode=False | |
print('end training_args') | |
def init_training(self): | |
self.initialize_training_components() | |
# self.epoch_count=0 | |
def load_model(self): | |
self.model=VitsModel.from_pretrained(self.dir_model,token=self.token).to(self.device) | |
self.model.setMfA(monotonic_align.maximum_path) | |
def init_wandb(self): | |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79") | |
#config = self.training_args.to_dict() | |
wandb.init(project= 'HugfaceTraining') | |
def load_modell(self,namemodel): | |
self.model=VitsModel.from_pretrained(namemodel,token=self.token).to(self.device) | |
return "true" | |
def load_dataset(self,train_dataset_dirs,eval_dataset_dir,full_generation_dir): | |
ctrain_datasets,eval_dataset,full_generation_dataset=get_data_loader(train_dataset_dirs = train_dataset_dirs, | |
eval_dataset_dir =eval_dataset_dir , | |
full_generation_dir =full_generation_dir , | |
device=self.device) | |
self.DataSets={'train':ctrain_datasets,'eval':eval_dataset,'full_generation':full_generation_dataset} | |
def initialize_training_components(self): | |
self.training_args=load_training_args(self.path_training_args) | |
training_args= self.training_args | |
training_args.weight_kl=1 | |
training_args.d_learning_rate=2e-4 | |
training_args.learning_rate=2e-4 | |
training_args.weight_mel=45 | |
training_args.num_train_epochs=4 | |
training_args.eval_steps=1000 | |
training_args.fp16=True | |
set_seed(training_args.seed) | |
# scaler = GradScaler(enabled=training_args.fp16) | |
# # Initialize optimizer, lr_scheduler | |
# for disc in self.model.discriminator.discriminators: | |
# disc.apply_weight_norm() | |
# self.model.decoder.apply_weight_norm() | |
# # torch.nn.utils.weight_norm(self.decoder.conv_pre) | |
# # torch.nn.utils.weight_norm(self.decoder.conv_post) | |
# for flow in self.model.flow.flows: | |
# torch.nn.utils.weight_norm(flow.conv_pre) | |
# torch.nn.utils.weight_norm(flow.conv_post) | |
# discriminator = self.model.discriminator | |
# self.model.discriminator = None | |
# model,discriminator=self.models | |
# optimizer = torch.optim.AdamW( | |
# model.parameters(), | |
# training_args.learning_rate, | |
# betas=[training_args.adam_beta1, training_args.adam_beta2], | |
# eps=training_args.adam_epsilon, | |
# ) | |
# # Hack to be able to train on multiple device | |
# disc_optimizer = torch.optim.AdamW( | |
# discriminator.parameters(), | |
# training_args.d_learning_rate, | |
# betas=[training_args.d_adam_beta1, training_args.d_adam_beta2], | |
# eps=training_args.adam_epsilon, | |
# ) | |
# lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
# optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
# ) | |
# disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
# disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
# ) | |
# # self.models=(self.model,discriminator) | |
# self.optimizers=(optimizer,disc_optimizer,scaler) | |
# self.lr_schedulers=(lr_scheduler,disc_lr_scheduler) | |
# self.tools=load_tools() | |
# self.stute_mode=True | |
# print(self.lr_schedulers) | |
def save_pretrained(self,path_save_model): | |
model,discriminator=self.models | |
model.discriminator=discriminator | |
for disc in model.discriminator.discriminators: | |
disc.remove_weight_norm() | |
model.decoder.remove_weight_norm() | |
# torch.nn.utils.remove_weight_norm(self.decoder.conv_pre) | |
# torch.nn.utils.remove_weight_norm(self.decoder.conv_post) | |
for flow in model.flow.flows: | |
torch.nn.utils.remove_weight_norm(flow.conv_pre) | |
torch.nn.utils.remove_weight_norm(flow.conv_post) | |
model.push_to_hub(path_save_model,token=self.token) | |
def run_train_epoch(self): | |
index_db=self.epoch_count%self.len_dataset | |
train_epoch(self,index_db=index_db,epoch=self.epoch_count,idspeakers=(0,1),full_generation_sample_index=-1) | |
self.epoch_count+=1 | |
return f'epoch_count:{self.epoch_count},global_step:{self.global_step},index_db"{index_db}' | |
# return (self.model,discriminator),(optimizer, disc_optimizer), (lr_scheduler, disc_lr_scheduler) | |
# logger.info("***** Training / Inference Done *****") | |
def modelspeech(texts): | |
inputs = tokenizer(texts, return_tensors="pt")#.cuda() | |
wav = model_vits(input_ids=inputs["input_ids"]).waveform#.detach() | |
# display(Audio(wav, rate=model.config.sampling_rate)) | |
return model_vits.config.sampling_rate,wav#remove_noise_nr(wav) | |
dataset_dir='ABThag-db' | |
train_dataset_dirs=[ | |
# ('/content/drive/MyDrive/vitsM/DATA/fahd_db',0), | |
# ('/content/drive/MyDrive/vitsM/DATA/fahd_db',0), | |
# ('/content/drive/MyDrive/vitsM/DB2KKKK',1), | |
# ('/content/drive/MyDrive/vitsM/DATA/Db_Amgd_50_Bitch10',0), | |
# ('/content/drive/MyDrive/vitsM/DB2KKKK',1), # | |
# ('/content/drive/MyDrive/vitsM/DATA/Db_Amgd_50_Bitch10',0), | |
# ('/content/drive/MyDrive/vitsM/DATA/DBWfaa-Bitch:8-Count:60',0), | |
# ('/content/drive/MyDrive/vitsM/DATA/Wafa/b10r',0), | |
# ('/content/drive/MyDrive/vitsM/DATA/Wafa/b16r',0), | |
# ('/content/drive/MyDrive/vitsM/DATA/Wafa/b4',0), | |
# ('/content/drive/MyDrive/vitsM/DATA/fahd_db',None), | |
# ('/content/drive/MyDrive/vitsM/DATA/wafa-db',None), | |
# ('/content/drive/MyDrive/vitsM/DATA/wafa-db',4), | |
# ('/content/drive/MyDrive/vitsM/DATA/DB-ABThag-Bitch:5-Count-37',4), | |
# ('/content/drive/MyDrive/vitsM/DB-300-k',6), | |
('databatchs',0), | |
#('/content/drive/MyDrive/dataset_ljBatchs',0), | |
] | |
dir_model='wasmdashai/vits-ar-huba-fine' | |
pro=TrinerModelVITS(dir_model=dir_model, | |
path_training_args='VitsModelSplit/finetune_config_ara.json', | |
train_dataset_dirs = train_dataset_dirs, | |
eval_dataset_dir = os.path.join(dataset_dir,'eval'), | |
full_generation_dir = os.path.join(dataset_dir,'full_generation'), | |
token=token, | |
device=device | |
) | |
def loadd_d(): | |
token=os.environ.get("key_") | |
#model=VitsModel.from_pretrained(n_model,token=token) | |
return token | |
def run_train_epoch(num): | |
TrinerModelVITS.KC+=1 | |
if num >0: | |
pro.init_training() | |
for i in range(num): | |
# model.train(True) | |
return pro.run_train_epoch() +f'- kc={TrinerModelVITS.KC}' | |
else: | |
pro.save_pretrained(pro.dir_model) | |
pro.load_model() | |
return 'save model ' | |
def init_training(): | |
pro.init_training() | |
return pro.dir_model,'init_training' | |
def init_Starting(): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
return 'init_Starting' | |
def init_wandb(): | |
pro.init_wandb() | |
return 'init_wandb' | |
def save_pretrained(path): | |
pro.save_pretrained(path) | |
pro.load_model() | |
return 'save_pretrained' | |
def read_modell(n_model): | |
#model22=Vits_models_only_decoder.from_pretrained(n_model,token)#.to("cuda") | |
return token | |
with gr.Blocks() as interface: | |
with gr.Accordion("get token", open=False): | |
btn_init = gr.Button("run") | |
label=gr.Label("hhh") | |
btn_init.click(loadd_d,[],[label]) | |
with gr.Accordion("onxx ", open=False): | |
c.starrt() | |
with gr.Accordion("init_Starting ", open=False): | |
btn_init = gr.Button("init start") | |
output_init = gr.Textbox(label="init") | |
btn_init.click(fn=init_Starting,inputs=[],outputs=[output_init]) | |
with gr.Accordion("init_wandb ", open=False): | |
btn_init_wandb = gr.Button("nit_wandb") | |
output_initbtn_init_wandb = gr.Textbox(label="init") | |
btn_init_wandb.click(fn=init_wandb,inputs=[],outputs=[output_initbtn_init_wandb]) | |
with gr.Accordion("init_training ", open=False): | |
btn_init_train = gr.Button("init init_train") | |
output_btn_init_train = gr.Textbox(label="init") | |
# btn_init_train.click(fn=init_training,inputs=[],outputs=[output_btn_init_train]) | |
with gr.Accordion("run_train_epoch ", open=False): | |
btn_run_train_epoch = gr.Button("run_train_epoch") | |
input_run_train_epoch = gr.Number(label="number _train_epoch") | |
output_run_train_epoch = gr.Textbox(label="run_train_epoch") | |
btn_run_train_epoch.click(fn=run_train_epoch,inputs=[input_run_train_epoch],outputs=[output_run_train_epoch]) | |
with gr.Accordion("save_pretrained ", open=False): | |
btn_save_pretrained = gr.Button("save_pretrained") | |
input_save_pretrained = gr.Textbox(label="save_pretrained") | |
output_save_pretrained = gr.Textbox(label="save_pretrained") | |
btn_save_pretrained.click(fn=save_pretrained,inputs=[input_save_pretrained],outputs=[output_save_pretrained]) | |
btn_init_train.click(fn=init_training,inputs=[],outputs=[input_save_pretrained,output_btn_init_train]) | |
interface.launch() | |
print('loadeed') | |