Spaces:
Sleeping
Sleeping
import gradio as gr | |
GK=0 | |
from transformers import AutoTokenizer | |
import torch | |
import os | |
from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss | |
token=os.environ.get("key_") | |
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token) | |
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device) | |
def modelspeech(texts): | |
inputs = tokenizer(texts, return_tensors="pt")#.cuda() | |
wav = model_vits(input_ids=inputs["input_ids"]).waveform#.detach() | |
# display(Audio(wav, rate=model.config.sampling_rate)) | |
return model_vits.config.sampling_rate,wav#remove_noise_nr(wav) | |
def greet(text,id): | |
global GK | |
b=int(id) | |
while True: | |
GK+=1 | |
texts=[text]*b | |
out=modelspeech(texts) | |
yield f"namber is {GK}" | |
demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text") | |
demo.launch() | |