RunTasking / VitsModelSplit /vits_models_only_decoder.py
wasmdashai's picture
Upload vits_models_only_decoder.py
7654db0 verified
import numpy as np
import torch
from torch import nn
import math
from typing import Any, Callable, Optional, Tuple, Union
from torch.cuda.amp import autocast, GradScaler
from .vits_config import VitsConfig,VitsPreTrainedModel
from .flow import VitsResidualCouplingBlock
from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
from .encoder import VitsTextEncoder
from .decoder import VitsHifiGan
from .posterior_encoder import VitsPosteriorEncoder
from .discriminator import VitsDiscriminator
from .vits_output import VitsModelOutput, VitsTrainingOutput
class Vits_models_only_decoder(VitsPreTrainedModel):
def __init__(self, config: VitsConfig):
super().__init__(config)
self.config = config
self.text_encoder = VitsTextEncoder(config)
self.flow = VitsResidualCouplingBlock(config)
self.decoder = VitsHifiGan(config)
if config.use_stochastic_duration_prediction:
self.duration_predictor = VitsStochasticDurationPredictor(config)
else:
self.duration_predictor = VitsDurationPredictor(config)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
# This is used only for training.
self.posterior_encoder = VitsPosteriorEncoder(config)
self.discriminator = VitsDiscriminator(config)
# These parameters control the synthesised speech properties
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
self.segment_size = self.config.segment_size // self.config.hop_length
# Initialize weights and apply final processing
self.post_init()
#....................................
def monotonic_align_max_path(self,log_likelihoods, mask):
# used for training - awfully slow
# an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
path = torch.zeros_like(log_likelihoods)
text_length_maxs = mask.sum(1)[:, 0]
latent_length_maxs = mask.sum(2)[:, 0]
indexes = latent_length_maxs - 1
max_neg_val = -1e9
for batch_id in range(len(path)):
index = int(indexes[batch_id].item())
text_length_max = int(text_length_maxs[batch_id].item())
latent_length_max = int(latent_length_maxs[batch_id].item())
for y in range(text_length_max):
for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
if x == y:
v_cur = max_neg_val
else:
v_cur = log_likelihoods[batch_id, y - 1, x]
if x == 0:
if y == 0:
v_prev = 0.0
else:
v_prev = max_neg_val
else:
v_prev = log_likelihoods[batch_id, y - 1, x - 1]
log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
for y in range(text_length_max - 1, -1, -1):
path[batch_id, y, index] = 1
if index != 0 and (
index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
):
index = index - 1
return path
#....................................
def slice_segments(self,hidden_states, ids_str, segment_size=4):
batch_size, channels, _ = hidden_states.shape
# 1d tensor containing the indices to keep
indices = torch.arange(segment_size).to(ids_str.device)
# extend the indices to match the shape of hidden_states
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
# offset indices with ids_str
indices = indices + ids_str.view(-1, 1, 1)
# gather indices
output = torch.gather(hidden_states, dim=2, index=indices)
return output
#....................................
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
batch_size, _, seq_len = hidden_states.size()
if sample_lengths is None:
sample_lengths = seq_len
ids_str_max = sample_lengths - segment_size + 1
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
ret = self.slice_segments(hidden_states, ids_str, segment_size)
return ret, ids_str
#....................................
def resize_speaker_embeddings(
self,
new_num_speakers: int,
speaker_embedding_size: Optional[int] = None,
pad_to_multiple_of: Optional[int] = 2,
):
if pad_to_multiple_of is not None:
new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
# first, take care of embed_speaker
if self.config.num_speakers <= 1:
if speaker_embedding_size is None:
raise ValueError(
"The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
)
# create new embedding layer
new_embeddings = nn.Embedding(
new_num_speakers,
speaker_embedding_size,
device=self.device,
)
# initialize all new embeddings
self._init_weights(new_embeddings)
else:
new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
self.embed_speaker = new_embeddings
# then take care of sub-models
self.flow.resize_speaker_embeddings(speaker_embedding_size)
for flow in self.flow.flows:
self._init_weights(flow.wavenet.cond_layer)
self.decoder.resize_speaker_embedding(speaker_embedding_size)
self._init_weights(self.decoder.cond)
self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
self._init_weights(self.duration_predictor.cond)
self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
self._init_weights(self.posterior_encoder.wavenet.cond_layer)
self.config.num_speakers = new_num_speakers
self.config.speaker_embedding_size = speaker_embedding_size
#....................................
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
#....................................
def set_input_embeddings(self, value):
self.text_encoder.set_input_embeddings(value)
#....................................
def apply_weight_norm(self):
self.decoder.apply_weight_norm()
self.flow.apply_weight_norm()
self.posterior_encoder.apply_weight_norm()
#....................................
def remove_weight_norm(self):
self.decoder.remove_weight_norm()
self.flow.remove_weight_norm()
self.posterior_encoder.remove_weight_norm()
#....................................
def discriminate(self, hidden_states):
return self.discriminator(hidden_states)
#....................................
def get_encoder(self):
return self.text_encoder
#....................................
def _inference_forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
):
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
return spectrogram