Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -34,97 +34,234 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
34 |
# discriminator=False,
|
35 |
# duration=False
|
36 |
# )
|
37 |
-
class model_onxx:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def download_file(self,file_path):
|
49 |
ff= gr.File(value=file_path, visible=True)
|
50 |
file_url = ff.value['url']
|
51 |
return file_url
|
52 |
-
def function_change(self,n_model,token,n_onxx,choice):
|
53 |
-
if choice=="decoder":
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
else:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
def starrt(self):
|
111 |
-
|
112 |
with gr.Row():
|
113 |
with gr.Column():
|
114 |
text_n_model=gr.Textbox(label="name model")
|
115 |
text_n_token=gr.Textbox(label="token")
|
116 |
text_n_onxx=gr.Textbox(label="name model onxx")
|
117 |
-
choice = gr.Dropdown(choices=["decoder", "
|
118 |
-
|
119 |
with gr.Column():
|
120 |
-
|
121 |
btn=gr.Button("convert")
|
122 |
label=gr.Label("return name model onxx")
|
123 |
-
btn.click(self.
|
124 |
#choice.change(fn=function_change, inputs=choice, outputs=label)
|
125 |
-
|
126 |
-
c=
|
127 |
-
#cc=c.starrt()
|
128 |
###############################################################
|
129 |
Lst=['input_ids',
|
130 |
'attention_mask',
|
|
|
34 |
# discriminator=False,
|
35 |
# duration=False
|
36 |
# )
|
37 |
+
# class model_onxx:
|
38 |
+
# def __init__(self):
|
39 |
+
# self.model=None
|
40 |
+
# self.n_onxx=""
|
41 |
+
# self.storage_dir = "uploads"
|
42 |
+
# pass
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
+
# def download_file(self,file_path):
|
49 |
+
# ff= gr.File(value=file_path, visible=True)
|
50 |
+
# file_url = ff.value['url']
|
51 |
+
# return file_url
|
52 |
+
# def function_change(self,n_model,token,n_onxx,choice):
|
53 |
+
# if choice=="decoder":
|
54 |
+
|
55 |
+
# V=self.convert_to_onnx_only_decoder(n_model,token,n_onxx)
|
56 |
+
# elif choice=="all only decoder":
|
57 |
+
# V=self.convert_to_onnx_only_decoder(n_model,token,n_onxx)
|
58 |
+
# else:
|
59 |
+
# V=self.convert_to_onnx_only_decoder(n_model,token,n_onxx)
|
60 |
+
# return V
|
61 |
+
|
62 |
+
# def install_model(self,n_model,token,n_onxx):
|
63 |
+
# self.n_onxx=n_onxx
|
64 |
+
# self.model= VitsModel.from_pretrained(n_model,token=token)
|
65 |
+
# return self.model
|
66 |
+
# def convert_model_decoder_onxx(self,n_model,token,namemodelonxx):
|
67 |
+
# self.model= VitsModel.from_pretrained(n_model,token=token)
|
68 |
+
# x=f"/tmp/{namemodelonxx}.onnx"
|
69 |
+
# return x
|
70 |
+
# def convert_to_onnx_only_decoder(self,n_model,token,namemodelonxx):
|
71 |
+
# model=VitsModel.from_pretrained(n_model,token=token)
|
72 |
+
# x=f"/tmp/{namemodelonxx}.onnx"
|
73 |
+
|
74 |
+
# vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
75 |
+
# example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
76 |
+
# torch.onnx.export(
|
77 |
+
# model, # The model to be exported
|
78 |
+
# example_input, # Example input for the model
|
79 |
+
# x,# The filename for the exported ONNX model
|
80 |
+
# opset_version=11, # Use an appropriate ONNX opset version
|
81 |
+
# input_names=['input'], # Name of the input layer
|
82 |
+
# output_names=['output'], # Name of the output layer
|
83 |
+
# dynamic_axes={
|
84 |
+
# 'input': {0: 'batch_size', 1: 'sequence_length'}, # Dynamic axes for variable-length inputs
|
85 |
+
# 'output': {0: 'batch_size'}
|
86 |
+
# }
|
87 |
+
# )
|
88 |
+
# return x
|
89 |
+
|
90 |
+
# def convert_to_onnx_all(self,n_model,token ,namemodelonxx):
|
91 |
+
|
92 |
+
# model=VitsModel.from_pretrained(n_model,token=token)
|
93 |
+
# x=f"dowload_file/{namemodelonxx}.onnx"
|
94 |
+
|
95 |
+
# vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
96 |
+
# example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
97 |
+
# torch.onnx.export(
|
98 |
+
# model, # The model to be exported
|
99 |
+
# example_input, # Example input for the model
|
100 |
+
# x, # The filename for the exported ONNX model
|
101 |
+
# opset_version=11, # Use an appropriate ONNX opset version
|
102 |
+
# input_names=['input'], # Name of the input layer
|
103 |
+
# output_names=['output'], # Name of the output layer
|
104 |
+
# dynamic_axes={
|
105 |
+
# 'input': {0: 'batch_size', 1: 'sequence_length'}, # Dynamic axes for variable-length inputs
|
106 |
+
# 'output': {0: 'batch_size'}
|
107 |
+
# }
|
108 |
+
# )
|
109 |
+
# return x
|
110 |
+
# def starrt(self):
|
111 |
+
# #with gr.Blocks() as demo:
|
112 |
+
# with gr.Row():
|
113 |
+
# with gr.Column():
|
114 |
+
# text_n_model=gr.Textbox(label="name model")
|
115 |
+
# text_n_token=gr.Textbox(label="token")
|
116 |
+
# text_n_onxx=gr.Textbox(label="name model onxx")
|
117 |
+
# choice = gr.Dropdown(choices=["decoder", "all anoly decoder", "All"], label="My Dropdown")
|
118 |
+
|
119 |
+
# with gr.Column():
|
120 |
+
|
121 |
+
# btn=gr.Button("convert")
|
122 |
+
# label=gr.Label("return name model onxx")
|
123 |
+
# btn.click(self.function_change,[text_n_model,text_n_token,text_n_onxx,choice],[gr.File(label="Download File")])
|
124 |
+
# #choice.change(fn=function_change, inputs=choice, outputs=label)
|
125 |
+
# #return demo
|
126 |
+
# c=model_onxx()
|
127 |
+
|
128 |
+
#3333333333333333333333333333
|
129 |
+
class OnnxModelConverter:
|
130 |
+
def __init__(self):
|
131 |
+
self.model = None
|
132 |
def download_file(self,file_path):
|
133 |
ff= gr.File(value=file_path, visible=True)
|
134 |
file_url = ff.value['url']
|
135 |
return file_url
|
|
|
|
|
136 |
|
137 |
+
def convert(self, model_name, token, onnx_filename, conversion_type):
|
138 |
+
"""
|
139 |
+
Main function to handle different types of model conversions.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
model_name (str): Name of the model to convert.
|
143 |
+
token (str): Access token for loading the model.
|
144 |
+
onnx_filename (str): Desired filename for the ONNX output.
|
145 |
+
conversion_type (str): Type of conversion ('decoder', 'only_decoder', or 'full_model').
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
str: The path to the generated ONNX file.
|
149 |
+
"""
|
150 |
+
if conversion_type == "decoder":
|
151 |
+
return self.convert_decoder(model_name, token, onnx_filename)
|
152 |
+
elif conversion_type == "only_decoder":
|
153 |
+
return self.convert_only_decoder(model_name, token, onnx_filename)
|
154 |
+
elif conversion_type == "full_model":
|
155 |
+
return self.convert_full_model(model_name, token, onnx_filename)
|
156 |
else:
|
157 |
+
raise ValueError("Invalid conversion type. Choose from 'decoder', 'only_decoder', or 'full_model'.")
|
158 |
+
|
159 |
+
def convert_decoder(self, model_name, token, onnx_filename):
|
160 |
+
"""
|
161 |
+
Converts only the decoder part of the Vits model to ONNX format.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
model_name (str): Name of the model to convert.
|
165 |
+
token (str): Access token for loading the model.
|
166 |
+
onnx_filename (str): Desired filename for the ONNX output.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
str: The path to the generated ONNX file.
|
170 |
+
"""
|
171 |
+
model = VitsModel.from_pretrained(model_name, token=token)
|
172 |
+
onnx_file = f"/tmp/{onnx_filename}.onnx"
|
173 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
174 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
175 |
+
|
176 |
+
torch.onnx.export(
|
177 |
+
model,
|
178 |
+
example_input,
|
179 |
+
onnx_file,
|
180 |
+
opset_version=11,
|
181 |
+
input_names=['input'],
|
182 |
+
output_names=['output'],
|
183 |
+
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
|
184 |
+
)
|
185 |
|
186 |
+
return onnx_file
|
187 |
+
|
188 |
+
|
189 |
+
def convert_only_decoder(self, model_name, token, onnx_filename):
|
190 |
+
"""
|
191 |
+
Converts only the decoder part of the Vits model to ONNX format.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
model_name (str): Name of the model to convert.
|
195 |
+
token (str): Access token for loading the model.
|
196 |
+
onnx_filename (str): Desired filename for the ONNX output.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
str: The path to the generated ONNX file.
|
200 |
+
"""
|
201 |
+
model = Vits_models_only_decoder.from_pretrained(model_name, token=token)
|
202 |
+
onnx_file = f"/tmp/{onnx_filename}.onnx"
|
203 |
+
|
204 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
205 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
206 |
+
|
207 |
+
torch.onnx.export(
|
208 |
+
model,
|
209 |
+
example_input,
|
210 |
+
onnx_file,
|
211 |
+
opset_version=11,
|
212 |
+
input_names=['input'],
|
213 |
+
output_names=['output'],
|
214 |
+
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
|
215 |
+
)
|
216 |
+
|
217 |
+
return onnx_file
|
218 |
+
|
219 |
+
def convert_full_model(self, model_name, token, onnx_filename):
|
220 |
+
"""
|
221 |
+
Converts the full Vits model (including encoder and decoder) to ONNX format.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
model_name (str): Name of the model to convert.
|
225 |
+
token (str): Access token for loading the model.
|
226 |
+
onnx_filename (str): Desired filename for the ONNX output.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
str: The path to the generated ONNX file.
|
230 |
+
"""
|
231 |
+
model = VitsModel.from_pretrained(model_name, token=token)
|
232 |
+
onnx_file = f"/tmp/{onnx_filename}.onnx"
|
233 |
+
|
234 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
235 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
236 |
+
|
237 |
+
torch.onnx.export(
|
238 |
+
model,
|
239 |
+
example_input,
|
240 |
+
onnx_file,
|
241 |
+
opset_version=11,
|
242 |
+
input_names=['input'],
|
243 |
+
output_names=['output'],
|
244 |
+
dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
|
245 |
+
)
|
246 |
+
|
247 |
+
return onnx_file
|
248 |
def starrt(self):
|
249 |
+
with gr.Blocks() as demo:
|
250 |
with gr.Row():
|
251 |
with gr.Column():
|
252 |
text_n_model=gr.Textbox(label="name model")
|
253 |
text_n_token=gr.Textbox(label="token")
|
254 |
text_n_onxx=gr.Textbox(label="name model onxx")
|
255 |
+
choice = gr.Dropdown(choices=["decoder", "only_decoder", "full_model"], label="My Dropdown")
|
256 |
+
|
257 |
with gr.Column():
|
258 |
+
|
259 |
btn=gr.Button("convert")
|
260 |
label=gr.Label("return name model onxx")
|
261 |
+
btn.click(self.convert,[text_n_model,text_n_token,text_n_onxx,choice],[outputs=gr.File(label="Download File")])
|
262 |
#choice.change(fn=function_change, inputs=choice, outputs=label)
|
263 |
+
return demo
|
264 |
+
c=OnnxModelConverter()
|
|
|
265 |
###############################################################
|
266 |
Lst=['input_ids',
|
267 |
'attention_mask',
|