Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,526 @@ tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=tok
|
|
10 |
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def modelspeech(texts):
|
14 |
|
15 |
|
|
|
10 |
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device)
|
12 |
|
13 |
+
import VitsModelSplit.monotonic_align as monotonic_align
|
14 |
+
from IPython.display import clear_output
|
15 |
+
from transformers import set_seed
|
16 |
+
import wandb
|
17 |
+
import logging
|
18 |
+
import copy
|
19 |
+
import torch
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from datasets import DatasetDict,Dataset
|
24 |
+
|
25 |
+
import os
|
26 |
+
|
27 |
+
from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss
|
28 |
+
from VitsModelSplit.PosteriorDecoderModel import PosteriorDecoderModel
|
29 |
+
from VitsModelSplit.feature_extraction import VitsFeatureExtractor
|
30 |
+
|
31 |
+
from transformers import AutoTokenizer, HfArgumentParser, set_seed
|
32 |
+
from VitsModelSplit.Arguments import DataTrainingArguments, ModelArguments, VITSTrainingArguments
|
33 |
+
from VitsModelSplit.dataset_features_collector import FeaturesCollectionDataset
|
34 |
+
from torch.cuda.amp import autocast, GradScaler
|
35 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
model=VitsModel.from_pretrained("facebook/mms-tts-eng").to(device)
|
37 |
+
# model1= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/OneBatch/S6/MMMMM-dash-azd60").to("cuda")
|
38 |
+
# model= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/TO/sp3/core/vend").to("cuda")
|
39 |
+
# model=VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/heppa/EndCore3/v0").to("cuda")
|
40 |
+
# model.discriminator=model1.discriminator
|
41 |
+
# model.duration_predictor=model1.duration_predictor
|
42 |
+
|
43 |
+
model.setMfA(monotonic_align.maximum_path)
|
44 |
+
# tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara",cache_dir="./")
|
45 |
+
feature_extractor = VitsFeatureExtractor()
|
46 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments))
|
47 |
+
json_file = os.path.abspath('VitsModelSplit/finetune_config_ara.json')
|
48 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file = json_file)
|
49 |
+
sgl=get_state_grad_loss(mel=True,
|
50 |
+
# generator=False,
|
51 |
+
# discriminator=False,
|
52 |
+
duration=False)
|
53 |
+
|
54 |
+
training_args.num_train_epochs=1000
|
55 |
+
training_args.fp16=True
|
56 |
+
training_args.eval_steps=300
|
57 |
+
# sgl=get_state_grad_loss(k1=True,#generator=False,
|
58 |
+
# discriminator=False,
|
59 |
+
# duration=False
|
60 |
+
# )
|
61 |
+
Lst=['input_ids',
|
62 |
+
'attention_mask',
|
63 |
+
'waveform',
|
64 |
+
'labels',
|
65 |
+
'labels_attention_mask',
|
66 |
+
'mel_scaled_input_features']
|
67 |
+
def covert_cuda_batch(d):
|
68 |
+
# return d
|
69 |
+
for key in Lst:
|
70 |
+
d[key]=d[key].cuda(non_blocking=True)
|
71 |
+
# for key in d['text_encoder_output']:
|
72 |
+
# d['text_encoder_output'][key]=d['text_encoder_output'][key].cuda(non_blocking=True)
|
73 |
+
# for key in d['posterior_encode_output']:
|
74 |
+
# d['posterior_encode_output'][key]=d['posterior_encode_output'][key].cuda(non_blocking=True)
|
75 |
+
|
76 |
+
return d
|
77 |
+
def generator_loss(disc_outputs):
|
78 |
+
total_loss = 0
|
79 |
+
gen_losses = []
|
80 |
+
for disc_output in disc_outputs:
|
81 |
+
disc_output = disc_output
|
82 |
+
loss = torch.mean((1 - disc_output) ** 2)
|
83 |
+
gen_losses.append(loss)
|
84 |
+
total_loss += loss
|
85 |
+
|
86 |
+
return total_loss, gen_losses
|
87 |
+
|
88 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
89 |
+
loss = 0
|
90 |
+
real_losses = 0
|
91 |
+
generated_losses = 0
|
92 |
+
for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs):
|
93 |
+
real_loss = torch.mean((1 - disc_real) ** 2)
|
94 |
+
generated_loss = torch.mean(disc_generated**2)
|
95 |
+
loss += real_loss + generated_loss
|
96 |
+
real_losses += real_loss
|
97 |
+
generated_losses += generated_loss
|
98 |
+
|
99 |
+
return loss, real_losses, generated_losses
|
100 |
+
|
101 |
+
def feature_loss(feature_maps_real, feature_maps_generated):
|
102 |
+
loss = 0
|
103 |
+
for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated):
|
104 |
+
for real, generated in zip(feature_map_real, feature_map_generated):
|
105 |
+
real = real.detach()
|
106 |
+
loss += torch.mean(torch.abs(real - generated))
|
107 |
+
|
108 |
+
return loss * 2
|
109 |
+
|
110 |
+
|
111 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
112 |
+
"""
|
113 |
+
z_p, logs_q: [b, h, t_t]
|
114 |
+
m_p, logs_p: [b, h, t_t]
|
115 |
+
"""
|
116 |
+
z_p = z_p.float()
|
117 |
+
logs_q = logs_q.float()
|
118 |
+
m_p = m_p.float()
|
119 |
+
logs_p = logs_p.float()
|
120 |
+
z_mask = z_mask.float()
|
121 |
+
|
122 |
+
kl = logs_p - logs_q - 0.5
|
123 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
124 |
+
kl = torch.sum(kl * z_mask)
|
125 |
+
l = kl / torch.sum(z_mask)
|
126 |
+
return l
|
127 |
+
#.............................................
|
128 |
+
# def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask):
|
129 |
+
|
130 |
+
|
131 |
+
# kl = prior_log_variance - posterior_log_variance - 0.5
|
132 |
+
# kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance)
|
133 |
+
# kl = torch.sum(kl * labels_mask)
|
134 |
+
# loss = kl / torch.sum(labels_mask)
|
135 |
+
# return loss
|
136 |
+
|
137 |
+
def get_state_grad_loss(k1=True,
|
138 |
+
mel=True,
|
139 |
+
duration=True,
|
140 |
+
generator=True,
|
141 |
+
discriminator=True):
|
142 |
+
return {'k1':k1,'mel':mel,'duration':duration,'generator':generator,'discriminator':discriminator}
|
143 |
+
|
144 |
+
|
145 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
146 |
+
if isinstance(parameters, torch.Tensor):
|
147 |
+
parameters = [parameters]
|
148 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
149 |
+
norm_type = float(norm_type)
|
150 |
+
if clip_value is not None:
|
151 |
+
clip_value = float(clip_value)
|
152 |
+
|
153 |
+
total_norm = 0
|
154 |
+
for p in parameters:
|
155 |
+
param_norm = p.grad.data.norm(norm_type)
|
156 |
+
total_norm += param_norm.item() ** norm_type
|
157 |
+
if clip_value is not None:
|
158 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
159 |
+
total_norm = total_norm ** (1. / norm_type)
|
160 |
+
return total_norm
|
161 |
+
|
162 |
+
|
163 |
+
def get_embed_speaker(self,speaker_id):
|
164 |
+
if self.config.num_speakers > 1 and speaker_id is not None:
|
165 |
+
if isinstance(speaker_id, int):
|
166 |
+
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
|
167 |
+
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
|
168 |
+
speaker_id = torch.tensor(speaker_id, device=self.device)
|
169 |
+
|
170 |
+
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
|
171 |
+
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
|
172 |
+
|
173 |
+
|
174 |
+
return self.embed_speaker(speaker_id).unsqueeze(-1)
|
175 |
+
else:
|
176 |
+
return None
|
177 |
+
def get_data_loader(train_dataset_dirs,eval_dataset_dir,full_generation_dir,device):
|
178 |
+
ctrain_datasets=[]
|
179 |
+
for dataset_dir ,id_sp in train_dataset_dirs:
|
180 |
+
train_dataset = FeaturesCollectionDataset(dataset_dir = os.path.join(dataset_dir,'train'),
|
181 |
+
device = device
|
182 |
+
)
|
183 |
+
ctrain_datasets.append((train_dataset,id_sp))
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
eval_dataset = None
|
189 |
+
if training_args.do_eval:
|
190 |
+
eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir,
|
191 |
+
device = device
|
192 |
+
)
|
193 |
+
|
194 |
+
full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir,
|
195 |
+
device = device)
|
196 |
+
return ctrain_datasets,eval_dataset,full_generation_dataset
|
197 |
+
global_step=0
|
198 |
+
def trainer_to_cuda(self,
|
199 |
+
ctrain_datasets = None,
|
200 |
+
eval_dataset = None,
|
201 |
+
full_generation_dataset = None,
|
202 |
+
feature_extractor = VitsFeatureExtractor(),
|
203 |
+
training_args = None,
|
204 |
+
full_generation_sample_index= 0,
|
205 |
+
project_name = "Posterior_Decoder_Finetuning",
|
206 |
+
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
|
207 |
+
is_used_text_encoder=True,
|
208 |
+
is_used_posterior_encode=True,
|
209 |
+
dict_state_grad_loss=None,
|
210 |
+
nk=1,
|
211 |
+
path_save_model='./',
|
212 |
+
maf=None,
|
213 |
+
n_back_save_model=3000,
|
214 |
+
start_speeker=0,
|
215 |
+
end_speeker=1,
|
216 |
+
n_epoch=0,
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
):
|
221 |
+
|
222 |
+
|
223 |
+
# os.makedirs(training_args.output_dir,exist_ok=True)
|
224 |
+
# logger = logging.getLogger(f"{__name__} Training")
|
225 |
+
# log_level = training_args.get_process_log_level()
|
226 |
+
# logger.setLevel(log_level)
|
227 |
+
|
228 |
+
# # wandb.login(key= wandbKey)
|
229 |
+
# # wandb.init(project= project_name,config = training_args.to_dict())
|
230 |
+
if dict_state_grad_loss is None:
|
231 |
+
dict_state_grad_loss=get_state_grad_loss()
|
232 |
+
global global_step
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
set_seed(training_args.seed)
|
237 |
+
scaler = GradScaler(enabled=training_args.fp16)
|
238 |
+
self.config.save_pretrained(training_args.output_dir)
|
239 |
+
len_db=len(ctrain_datasets)
|
240 |
+
self.full_generation_sample = full_generation_dataset[full_generation_sample_index]
|
241 |
+
|
242 |
+
# init optimizer, lr_scheduler
|
243 |
+
for disc in self.discriminator.discriminators:
|
244 |
+
disc.apply_weight_norm()
|
245 |
+
self.decoder.apply_weight_norm()
|
246 |
+
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
|
247 |
+
# torch.nn.utils.weight_norm(self.decoder.conv_post)
|
248 |
+
for flow in self.flow.flows:
|
249 |
+
torch.nn.utils.weight_norm(flow.conv_pre)
|
250 |
+
torch.nn.utils.weight_norm(flow.conv_post)
|
251 |
+
|
252 |
+
discriminator=self.discriminator
|
253 |
+
self.discriminator=None
|
254 |
+
|
255 |
+
optimizer = torch.optim.AdamW(
|
256 |
+
self.parameters(),
|
257 |
+
training_args.learning_rate,
|
258 |
+
betas=[training_args.adam_beta1, training_args.adam_beta2],
|
259 |
+
eps=training_args.adam_epsilon,
|
260 |
+
)
|
261 |
+
|
262 |
+
# hack to be able to train on multiple device
|
263 |
+
|
264 |
+
|
265 |
+
disc_optimizer = torch.optim.AdamW(
|
266 |
+
discriminator.parameters(),
|
267 |
+
training_args.d_learning_rate,
|
268 |
+
betas=[training_args.d_adam_beta1, training_args.d_adam_beta2],
|
269 |
+
eps=training_args.adam_epsilon,
|
270 |
+
)
|
271 |
+
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
272 |
+
optimizer, gamma=training_args.lr_decay, last_epoch=-1
|
273 |
+
)
|
274 |
+
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
275 |
+
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1)
|
276 |
+
|
277 |
+
|
278 |
+
logger.info("***** Running training *****")
|
279 |
+
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
|
280 |
+
|
281 |
+
|
282 |
+
#.......................loop training............................
|
283 |
+
|
284 |
+
|
285 |
+
|
286 |
+
for epoch in range(training_args.num_train_epochs):
|
287 |
+
train_losses_sum = 0
|
288 |
+
loss_gen=0
|
289 |
+
loss_des=0
|
290 |
+
loss_durationsall=0
|
291 |
+
loss_melall=0
|
292 |
+
loss_klall=0
|
293 |
+
loss_fmapsall=0
|
294 |
+
lr_scheduler.step()
|
295 |
+
|
296 |
+
disc_lr_scheduler.step()
|
297 |
+
train_dataset,speaker_id=ctrain_datasets[epoch%len_db]
|
298 |
+
print(f" Num Epochs = {int((epoch+n_epoch)/len_db)}, speaker_id DB ={speaker_id}")
|
299 |
+
num_div_proc=int(len(train_dataset)/10)
|
300 |
+
print(' -process traning : [',end='')
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
for step, batch in enumerate(train_dataset):
|
309 |
+
# if speaker_id==None:
|
310 |
+
# if step<3 :continue
|
311 |
+
|
312 |
+
# if step>200:break
|
313 |
+
|
314 |
+
|
315 |
+
batch=covert_cuda_batch(batch)
|
316 |
+
displayloss={}
|
317 |
+
|
318 |
+
with autocast(enabled=training_args.fp16):
|
319 |
+
speaker_embeddings=get_embed_speaker(self,batch["speaker_id"] if speaker_id ==None else speaker_id )
|
320 |
+
|
321 |
+
|
322 |
+
waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask = self.forward_train(
|
323 |
+
input_ids=batch["input_ids"],
|
324 |
+
attention_mask=batch["attention_mask"],
|
325 |
+
labels=batch["labels"],
|
326 |
+
labels_attention_mask=batch["labels_attention_mask"],
|
327 |
+
text_encoder_output =None ,
|
328 |
+
posterior_encode_output=None ,
|
329 |
+
return_dict=True,
|
330 |
+
monotonic_alignment_function= maf,
|
331 |
+
speaker_embeddings=speaker_embeddings
|
332 |
+
)
|
333 |
+
|
334 |
+
mel_scaled_labels = batch["mel_scaled_input_features"]
|
335 |
+
mel_scaled_target = self.slice_segments(mel_scaled_labels, ids_slice,self.segment_size)
|
336 |
+
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(waveform.squeeze(1))[1]
|
337 |
+
|
338 |
+
target_waveform = batch["waveform"].transpose(1, 2)
|
339 |
+
target_waveform = self.slice_segments(
|
340 |
+
target_waveform,
|
341 |
+
ids_slice * feature_extractor.hop_length,
|
342 |
+
self.config.segment_size
|
343 |
+
)
|
344 |
+
|
345 |
+
discriminator_target, fmaps_target = discriminator(target_waveform)
|
346 |
+
discriminator_candidate, fmaps_candidate = discriminator(waveform.detach())
|
347 |
+
with autocast(enabled=False):
|
348 |
+
if dict_state_grad_loss['discriminator']:
|
349 |
+
|
350 |
+
|
351 |
+
loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss(
|
352 |
+
discriminator_target, discriminator_candidate
|
353 |
+
)
|
354 |
+
|
355 |
+
dk={"step_loss_disc": loss_disc.detach().item(),
|
356 |
+
"step_loss_real_disc": loss_real_disc.detach().item(),
|
357 |
+
"step_loss_fake_disc": loss_fake_disc.detach().item()}
|
358 |
+
displayloss['dict_loss_discriminator']=dk
|
359 |
+
loss_dd = loss_disc# + loss_real_disc + loss_fake_disc
|
360 |
+
|
361 |
+
# loss_dd.backward()
|
362 |
+
|
363 |
+
disc_optimizer.zero_grad()
|
364 |
+
scaler.scale(loss_dd).backward()
|
365 |
+
scaler.unscale_(disc_optimizer )
|
366 |
+
grad_norm_d = clip_grad_value_(discriminator.parameters(), None)
|
367 |
+
scaler.step(disc_optimizer)
|
368 |
+
loss_des+=grad_norm_d
|
369 |
+
|
370 |
+
|
371 |
+
with autocast(enabled=training_args.fp16):
|
372 |
+
|
373 |
+
# backpropagate
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
discriminator_target, fmaps_target = discriminator(target_waveform)
|
380 |
+
|
381 |
+
discriminator_candidate, fmaps_candidate = discriminator(waveform.detach())
|
382 |
+
with autocast(enabled=False):
|
383 |
+
if dict_state_grad_loss['k1']:
|
384 |
+
loss_kl = kl_loss(
|
385 |
+
prior_latents,
|
386 |
+
posterior_log_variances,
|
387 |
+
prior_means,
|
388 |
+
prior_log_variances,
|
389 |
+
labels_padding_mask,
|
390 |
+
)
|
391 |
+
loss_kl=loss_kl*training_args.weight_kl
|
392 |
+
loss_klall+=loss_kl.detach().item()
|
393 |
+
#if displayloss['loss_kl']>=0:
|
394 |
+
# loss_kl.backward()
|
395 |
+
|
396 |
+
if dict_state_grad_loss['mel']:
|
397 |
+
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)*training_args.weight_mel
|
398 |
+
loss_melall+= loss_mel.detach().item()
|
399 |
+
# train_losses_sum = train_losses_sum + displayloss['loss_mel']
|
400 |
+
# if displayloss['loss_mel']>=0:
|
401 |
+
# loss_mel.backward()
|
402 |
+
|
403 |
+
if dict_state_grad_loss['duration']:
|
404 |
+
loss_duration=torch.sum(log_duration)*training_args.weight_duration
|
405 |
+
loss_durationsall+=loss_duration.detach().item()
|
406 |
+
# if displayloss['loss_duration']>=0:
|
407 |
+
# loss_duration.backward()
|
408 |
+
if dict_state_grad_loss['generator']:
|
409 |
+
loss_fmaps = feature_loss(fmaps_target, fmaps_candidate)
|
410 |
+
loss_gen, losses_gen = generator_loss(discriminator_candidate)
|
411 |
+
loss_gen=loss_gen * training_args.weight_gen
|
412 |
+
displayloss['loss_gen'] = loss_gen.detach().item()
|
413 |
+
# loss_gen.backward(retain_graph=True)
|
414 |
+
loss_fmaps=loss_fmaps * training_args.weight_fmaps
|
415 |
+
displayloss['loss_fmaps'] = loss_fmaps.detach().item()
|
416 |
+
# loss_fmaps.backward(retain_graph=True)
|
417 |
+
total_generator_loss = (
|
418 |
+
loss_duration
|
419 |
+
+ loss_mel
|
420 |
+
+ loss_kl
|
421 |
+
+ loss_fmaps
|
422 |
+
+ loss_gen
|
423 |
+
)
|
424 |
+
# total_generator_loss.backward()
|
425 |
+
optimizer.zero_grad()
|
426 |
+
scaler.scale(total_generator_loss).backward()
|
427 |
+
scaler.unscale_(optimizer)
|
428 |
+
grad_norm_g = clip_grad_value_(self.parameters(), None)
|
429 |
+
scaler.step(optimizer)
|
430 |
+
scaler.update()
|
431 |
+
loss_gen+=grad_norm_g
|
432 |
+
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
# optimizer.step()
|
439 |
+
|
440 |
+
|
441 |
+
|
442 |
+
|
443 |
+
# print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ")
|
444 |
+
# print(f"display loss function enable :{displayloss}")
|
445 |
+
|
446 |
+
global_step +=1
|
447 |
+
if step%num_div_proc==0:
|
448 |
+
print('==',end='')
|
449 |
+
|
450 |
+
# validation
|
451 |
+
|
452 |
+
do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0)
|
453 |
+
if do_eval:
|
454 |
+
speaker_id_c=int(torch.randint(start_speeker,end_speeker,size=(1,))[0])
|
455 |
+
logger.info("Running validation... ")
|
456 |
+
eval_losses_sum = 0
|
457 |
+
cc=0;
|
458 |
+
for step, batch in enumerate(eval_dataset):
|
459 |
+
break
|
460 |
+
if cc>2: break
|
461 |
+
cc+=1
|
462 |
+
with torch.no_grad():
|
463 |
+
model_outputs = self.forward(
|
464 |
+
input_ids=batch["input_ids"],
|
465 |
+
attention_mask=batch["attention_mask"],
|
466 |
+
labels=batch["labels"],
|
467 |
+
labels_attention_mask=batch["labels_attention_mask"],
|
468 |
+
speaker_id=batch["speaker_id"],
|
469 |
+
|
470 |
+
|
471 |
+
return_dict=True,
|
472 |
+
|
473 |
+
)
|
474 |
+
|
475 |
+
mel_scaled_labels = batch["mel_scaled_input_features"]
|
476 |
+
mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size)
|
477 |
+
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1]
|
478 |
+
loss = loss_mel.detach().item()
|
479 |
+
eval_losses_sum +=loss
|
480 |
+
|
481 |
+
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
|
482 |
+
print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ")
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
with torch.no_grad():
|
487 |
+
full_generation_sample = self.full_generation_sample
|
488 |
+
full_generation =self.forward(
|
489 |
+
input_ids =full_generation_sample["input_ids"],
|
490 |
+
attention_mask=full_generation_sample["attention_mask"],
|
491 |
+
speaker_id=speaker_id_c
|
492 |
+
)
|
493 |
+
|
494 |
+
full_generation_waveform = full_generation.waveform.cpu().numpy()
|
495 |
+
|
496 |
+
wandb.log({
|
497 |
+
"eval_losses": eval_losses_sum,
|
498 |
+
"full generations samples": [
|
499 |
+
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000)
|
500 |
+
for w in full_generation_waveform],})
|
501 |
+
step+=1
|
502 |
+
# wandb.log({"train_losses":loss_melall})
|
503 |
+
wandb.log({"loss_gen":loss_gen/step})
|
504 |
+
wandb.log({"loss_des":loss_des/step})
|
505 |
+
wandb.log({"loss_duration":loss_durationsall/step})
|
506 |
+
wandb.log({"loss_mel":loss_melall/step})
|
507 |
+
wandb.log({f"loss_kl_db{speaker_id}":loss_klall/step})
|
508 |
+
print(']',end='')
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
|
513 |
+
# self.save_pretrained(path_save_model)
|
514 |
+
|
515 |
+
|
516 |
+
self.discriminator=discriminator
|
517 |
+
for disc in self.discriminator.discriminators:
|
518 |
+
disc.remove_weight_norm()
|
519 |
+
self.decoder.remove_weight_norm()
|
520 |
+
# torch.nn.utils.remove_weight_norm(self.decoder.conv_pre)
|
521 |
+
# torch.nn.utils.remove_weight_norm(self.decoder.conv_post)
|
522 |
+
for flow in self.flow.flows:
|
523 |
+
torch.nn.utils.remove_weight_norm(flow.conv_pre)
|
524 |
+
torch.nn.utils.remove_weight_norm(flow.conv_post)
|
525 |
+
|
526 |
+
self.save_pretrained(path_save_model)
|
527 |
+
|
528 |
+
logger.info("Running final full generations samples... ")
|
529 |
+
|
530 |
+
|
531 |
+
|
532 |
+
logger.info("***** Training / Inference Done *****")
|
533 |
def modelspeech(texts):
|
534 |
|
535 |
|