wasmdashai commited on
Commit
1ea390e
·
verified ·
1 Parent(s): d7c48f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +520 -0
app.py CHANGED
@@ -10,6 +10,526 @@ tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=tok
10
  #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
  model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device)
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  def modelspeech(texts):
14
 
15
 
 
10
  #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
  model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device)
12
 
13
+ import VitsModelSplit.monotonic_align as monotonic_align
14
+ from IPython.display import clear_output
15
+ from transformers import set_seed
16
+ import wandb
17
+ import logging
18
+ import copy
19
+ import torch
20
+
21
+ import numpy as np
22
+ import torch
23
+ from datasets import DatasetDict,Dataset
24
+
25
+ import os
26
+
27
+ from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss
28
+ from VitsModelSplit.PosteriorDecoderModel import PosteriorDecoderModel
29
+ from VitsModelSplit.feature_extraction import VitsFeatureExtractor
30
+
31
+ from transformers import AutoTokenizer, HfArgumentParser, set_seed
32
+ from VitsModelSplit.Arguments import DataTrainingArguments, ModelArguments, VITSTrainingArguments
33
+ from VitsModelSplit.dataset_features_collector import FeaturesCollectionDataset
34
+ from torch.cuda.amp import autocast, GradScaler
35
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
+ model=VitsModel.from_pretrained("facebook/mms-tts-eng").to(device)
37
+ # model1= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/OneBatch/S6/MMMMM-dash-azd60").to("cuda")
38
+ # model= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/TO/sp3/core/vend").to("cuda")
39
+ # model=VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/heppa/EndCore3/v0").to("cuda")
40
+ # model.discriminator=model1.discriminator
41
+ # model.duration_predictor=model1.duration_predictor
42
+
43
+ model.setMfA(monotonic_align.maximum_path)
44
+ # tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara",cache_dir="./")
45
+ feature_extractor = VitsFeatureExtractor()
46
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments))
47
+ json_file = os.path.abspath('VitsModelSplit/finetune_config_ara.json')
48
+ model_args, data_args, training_args = parser.parse_json_file(json_file = json_file)
49
+ sgl=get_state_grad_loss(mel=True,
50
+ # generator=False,
51
+ # discriminator=False,
52
+ duration=False)
53
+
54
+ training_args.num_train_epochs=1000
55
+ training_args.fp16=True
56
+ training_args.eval_steps=300
57
+ # sgl=get_state_grad_loss(k1=True,#generator=False,
58
+ # discriminator=False,
59
+ # duration=False
60
+ # )
61
+ Lst=['input_ids',
62
+ 'attention_mask',
63
+ 'waveform',
64
+ 'labels',
65
+ 'labels_attention_mask',
66
+ 'mel_scaled_input_features']
67
+ def covert_cuda_batch(d):
68
+ # return d
69
+ for key in Lst:
70
+ d[key]=d[key].cuda(non_blocking=True)
71
+ # for key in d['text_encoder_output']:
72
+ # d['text_encoder_output'][key]=d['text_encoder_output'][key].cuda(non_blocking=True)
73
+ # for key in d['posterior_encode_output']:
74
+ # d['posterior_encode_output'][key]=d['posterior_encode_output'][key].cuda(non_blocking=True)
75
+
76
+ return d
77
+ def generator_loss(disc_outputs):
78
+ total_loss = 0
79
+ gen_losses = []
80
+ for disc_output in disc_outputs:
81
+ disc_output = disc_output
82
+ loss = torch.mean((1 - disc_output) ** 2)
83
+ gen_losses.append(loss)
84
+ total_loss += loss
85
+
86
+ return total_loss, gen_losses
87
+
88
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
89
+ loss = 0
90
+ real_losses = 0
91
+ generated_losses = 0
92
+ for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs):
93
+ real_loss = torch.mean((1 - disc_real) ** 2)
94
+ generated_loss = torch.mean(disc_generated**2)
95
+ loss += real_loss + generated_loss
96
+ real_losses += real_loss
97
+ generated_losses += generated_loss
98
+
99
+ return loss, real_losses, generated_losses
100
+
101
+ def feature_loss(feature_maps_real, feature_maps_generated):
102
+ loss = 0
103
+ for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated):
104
+ for real, generated in zip(feature_map_real, feature_map_generated):
105
+ real = real.detach()
106
+ loss += torch.mean(torch.abs(real - generated))
107
+
108
+ return loss * 2
109
+
110
+
111
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
112
+ """
113
+ z_p, logs_q: [b, h, t_t]
114
+ m_p, logs_p: [b, h, t_t]
115
+ """
116
+ z_p = z_p.float()
117
+ logs_q = logs_q.float()
118
+ m_p = m_p.float()
119
+ logs_p = logs_p.float()
120
+ z_mask = z_mask.float()
121
+
122
+ kl = logs_p - logs_q - 0.5
123
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
124
+ kl = torch.sum(kl * z_mask)
125
+ l = kl / torch.sum(z_mask)
126
+ return l
127
+ #.............................................
128
+ # def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask):
129
+
130
+
131
+ # kl = prior_log_variance - posterior_log_variance - 0.5
132
+ # kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance)
133
+ # kl = torch.sum(kl * labels_mask)
134
+ # loss = kl / torch.sum(labels_mask)
135
+ # return loss
136
+
137
+ def get_state_grad_loss(k1=True,
138
+ mel=True,
139
+ duration=True,
140
+ generator=True,
141
+ discriminator=True):
142
+ return {'k1':k1,'mel':mel,'duration':duration,'generator':generator,'discriminator':discriminator}
143
+
144
+
145
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
146
+ if isinstance(parameters, torch.Tensor):
147
+ parameters = [parameters]
148
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
149
+ norm_type = float(norm_type)
150
+ if clip_value is not None:
151
+ clip_value = float(clip_value)
152
+
153
+ total_norm = 0
154
+ for p in parameters:
155
+ param_norm = p.grad.data.norm(norm_type)
156
+ total_norm += param_norm.item() ** norm_type
157
+ if clip_value is not None:
158
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
159
+ total_norm = total_norm ** (1. / norm_type)
160
+ return total_norm
161
+
162
+
163
+ def get_embed_speaker(self,speaker_id):
164
+ if self.config.num_speakers > 1 and speaker_id is not None:
165
+ if isinstance(speaker_id, int):
166
+ speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
167
+ elif isinstance(speaker_id, (list, tuple, np.ndarray)):
168
+ speaker_id = torch.tensor(speaker_id, device=self.device)
169
+
170
+ if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
171
+ raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
172
+
173
+
174
+ return self.embed_speaker(speaker_id).unsqueeze(-1)
175
+ else:
176
+ return None
177
+ def get_data_loader(train_dataset_dirs,eval_dataset_dir,full_generation_dir,device):
178
+ ctrain_datasets=[]
179
+ for dataset_dir ,id_sp in train_dataset_dirs:
180
+ train_dataset = FeaturesCollectionDataset(dataset_dir = os.path.join(dataset_dir,'train'),
181
+ device = device
182
+ )
183
+ ctrain_datasets.append((train_dataset,id_sp))
184
+
185
+
186
+
187
+
188
+ eval_dataset = None
189
+ if training_args.do_eval:
190
+ eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir,
191
+ device = device
192
+ )
193
+
194
+ full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir,
195
+ device = device)
196
+ return ctrain_datasets,eval_dataset,full_generation_dataset
197
+ global_step=0
198
+ def trainer_to_cuda(self,
199
+ ctrain_datasets = None,
200
+ eval_dataset = None,
201
+ full_generation_dataset = None,
202
+ feature_extractor = VitsFeatureExtractor(),
203
+ training_args = None,
204
+ full_generation_sample_index= 0,
205
+ project_name = "Posterior_Decoder_Finetuning",
206
+ wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
207
+ is_used_text_encoder=True,
208
+ is_used_posterior_encode=True,
209
+ dict_state_grad_loss=None,
210
+ nk=1,
211
+ path_save_model='./',
212
+ maf=None,
213
+ n_back_save_model=3000,
214
+ start_speeker=0,
215
+ end_speeker=1,
216
+ n_epoch=0,
217
+
218
+
219
+
220
+ ):
221
+
222
+
223
+ # os.makedirs(training_args.output_dir,exist_ok=True)
224
+ # logger = logging.getLogger(f"{__name__} Training")
225
+ # log_level = training_args.get_process_log_level()
226
+ # logger.setLevel(log_level)
227
+
228
+ # # wandb.login(key= wandbKey)
229
+ # # wandb.init(project= project_name,config = training_args.to_dict())
230
+ if dict_state_grad_loss is None:
231
+ dict_state_grad_loss=get_state_grad_loss()
232
+ global global_step
233
+
234
+
235
+
236
+ set_seed(training_args.seed)
237
+ scaler = GradScaler(enabled=training_args.fp16)
238
+ self.config.save_pretrained(training_args.output_dir)
239
+ len_db=len(ctrain_datasets)
240
+ self.full_generation_sample = full_generation_dataset[full_generation_sample_index]
241
+
242
+ # init optimizer, lr_scheduler
243
+ for disc in self.discriminator.discriminators:
244
+ disc.apply_weight_norm()
245
+ self.decoder.apply_weight_norm()
246
+ # torch.nn.utils.weight_norm(self.decoder.conv_pre)
247
+ # torch.nn.utils.weight_norm(self.decoder.conv_post)
248
+ for flow in self.flow.flows:
249
+ torch.nn.utils.weight_norm(flow.conv_pre)
250
+ torch.nn.utils.weight_norm(flow.conv_post)
251
+
252
+ discriminator=self.discriminator
253
+ self.discriminator=None
254
+
255
+ optimizer = torch.optim.AdamW(
256
+ self.parameters(),
257
+ training_args.learning_rate,
258
+ betas=[training_args.adam_beta1, training_args.adam_beta2],
259
+ eps=training_args.adam_epsilon,
260
+ )
261
+
262
+ # hack to be able to train on multiple device
263
+
264
+
265
+ disc_optimizer = torch.optim.AdamW(
266
+ discriminator.parameters(),
267
+ training_args.d_learning_rate,
268
+ betas=[training_args.d_adam_beta1, training_args.d_adam_beta2],
269
+ eps=training_args.adam_epsilon,
270
+ )
271
+ lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
272
+ optimizer, gamma=training_args.lr_decay, last_epoch=-1
273
+ )
274
+ disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
275
+ disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1)
276
+
277
+
278
+ logger.info("***** Running training *****")
279
+ logger.info(f" Num Epochs = {training_args.num_train_epochs}")
280
+
281
+
282
+ #.......................loop training............................
283
+
284
+
285
+
286
+ for epoch in range(training_args.num_train_epochs):
287
+ train_losses_sum = 0
288
+ loss_gen=0
289
+ loss_des=0
290
+ loss_durationsall=0
291
+ loss_melall=0
292
+ loss_klall=0
293
+ loss_fmapsall=0
294
+ lr_scheduler.step()
295
+
296
+ disc_lr_scheduler.step()
297
+ train_dataset,speaker_id=ctrain_datasets[epoch%len_db]
298
+ print(f" Num Epochs = {int((epoch+n_epoch)/len_db)}, speaker_id DB ={speaker_id}")
299
+ num_div_proc=int(len(train_dataset)/10)
300
+ print(' -process traning : [',end='')
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+ for step, batch in enumerate(train_dataset):
309
+ # if speaker_id==None:
310
+ # if step<3 :continue
311
+
312
+ # if step>200:break
313
+
314
+
315
+ batch=covert_cuda_batch(batch)
316
+ displayloss={}
317
+
318
+ with autocast(enabled=training_args.fp16):
319
+ speaker_embeddings=get_embed_speaker(self,batch["speaker_id"] if speaker_id ==None else speaker_id )
320
+
321
+
322
+ waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask = self.forward_train(
323
+ input_ids=batch["input_ids"],
324
+ attention_mask=batch["attention_mask"],
325
+ labels=batch["labels"],
326
+ labels_attention_mask=batch["labels_attention_mask"],
327
+ text_encoder_output =None ,
328
+ posterior_encode_output=None ,
329
+ return_dict=True,
330
+ monotonic_alignment_function= maf,
331
+ speaker_embeddings=speaker_embeddings
332
+ )
333
+
334
+ mel_scaled_labels = batch["mel_scaled_input_features"]
335
+ mel_scaled_target = self.slice_segments(mel_scaled_labels, ids_slice,self.segment_size)
336
+ mel_scaled_generation = feature_extractor._torch_extract_fbank_features(waveform.squeeze(1))[1]
337
+
338
+ target_waveform = batch["waveform"].transpose(1, 2)
339
+ target_waveform = self.slice_segments(
340
+ target_waveform,
341
+ ids_slice * feature_extractor.hop_length,
342
+ self.config.segment_size
343
+ )
344
+
345
+ discriminator_target, fmaps_target = discriminator(target_waveform)
346
+ discriminator_candidate, fmaps_candidate = discriminator(waveform.detach())
347
+ with autocast(enabled=False):
348
+ if dict_state_grad_loss['discriminator']:
349
+
350
+
351
+ loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss(
352
+ discriminator_target, discriminator_candidate
353
+ )
354
+
355
+ dk={"step_loss_disc": loss_disc.detach().item(),
356
+ "step_loss_real_disc": loss_real_disc.detach().item(),
357
+ "step_loss_fake_disc": loss_fake_disc.detach().item()}
358
+ displayloss['dict_loss_discriminator']=dk
359
+ loss_dd = loss_disc# + loss_real_disc + loss_fake_disc
360
+
361
+ # loss_dd.backward()
362
+
363
+ disc_optimizer.zero_grad()
364
+ scaler.scale(loss_dd).backward()
365
+ scaler.unscale_(disc_optimizer )
366
+ grad_norm_d = clip_grad_value_(discriminator.parameters(), None)
367
+ scaler.step(disc_optimizer)
368
+ loss_des+=grad_norm_d
369
+
370
+
371
+ with autocast(enabled=training_args.fp16):
372
+
373
+ # backpropagate
374
+
375
+
376
+
377
+
378
+
379
+ discriminator_target, fmaps_target = discriminator(target_waveform)
380
+
381
+ discriminator_candidate, fmaps_candidate = discriminator(waveform.detach())
382
+ with autocast(enabled=False):
383
+ if dict_state_grad_loss['k1']:
384
+ loss_kl = kl_loss(
385
+ prior_latents,
386
+ posterior_log_variances,
387
+ prior_means,
388
+ prior_log_variances,
389
+ labels_padding_mask,
390
+ )
391
+ loss_kl=loss_kl*training_args.weight_kl
392
+ loss_klall+=loss_kl.detach().item()
393
+ #if displayloss['loss_kl']>=0:
394
+ # loss_kl.backward()
395
+
396
+ if dict_state_grad_loss['mel']:
397
+ loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)*training_args.weight_mel
398
+ loss_melall+= loss_mel.detach().item()
399
+ # train_losses_sum = train_losses_sum + displayloss['loss_mel']
400
+ # if displayloss['loss_mel']>=0:
401
+ # loss_mel.backward()
402
+
403
+ if dict_state_grad_loss['duration']:
404
+ loss_duration=torch.sum(log_duration)*training_args.weight_duration
405
+ loss_durationsall+=loss_duration.detach().item()
406
+ # if displayloss['loss_duration']>=0:
407
+ # loss_duration.backward()
408
+ if dict_state_grad_loss['generator']:
409
+ loss_fmaps = feature_loss(fmaps_target, fmaps_candidate)
410
+ loss_gen, losses_gen = generator_loss(discriminator_candidate)
411
+ loss_gen=loss_gen * training_args.weight_gen
412
+ displayloss['loss_gen'] = loss_gen.detach().item()
413
+ # loss_gen.backward(retain_graph=True)
414
+ loss_fmaps=loss_fmaps * training_args.weight_fmaps
415
+ displayloss['loss_fmaps'] = loss_fmaps.detach().item()
416
+ # loss_fmaps.backward(retain_graph=True)
417
+ total_generator_loss = (
418
+ loss_duration
419
+ + loss_mel
420
+ + loss_kl
421
+ + loss_fmaps
422
+ + loss_gen
423
+ )
424
+ # total_generator_loss.backward()
425
+ optimizer.zero_grad()
426
+ scaler.scale(total_generator_loss).backward()
427
+ scaler.unscale_(optimizer)
428
+ grad_norm_g = clip_grad_value_(self.parameters(), None)
429
+ scaler.step(optimizer)
430
+ scaler.update()
431
+ loss_gen+=grad_norm_g
432
+
433
+
434
+
435
+
436
+
437
+
438
+ # optimizer.step()
439
+
440
+
441
+
442
+
443
+ # print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ")
444
+ # print(f"display loss function enable :{displayloss}")
445
+
446
+ global_step +=1
447
+ if step%num_div_proc==0:
448
+ print('==',end='')
449
+
450
+ # validation
451
+
452
+ do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0)
453
+ if do_eval:
454
+ speaker_id_c=int(torch.randint(start_speeker,end_speeker,size=(1,))[0])
455
+ logger.info("Running validation... ")
456
+ eval_losses_sum = 0
457
+ cc=0;
458
+ for step, batch in enumerate(eval_dataset):
459
+ break
460
+ if cc>2: break
461
+ cc+=1
462
+ with torch.no_grad():
463
+ model_outputs = self.forward(
464
+ input_ids=batch["input_ids"],
465
+ attention_mask=batch["attention_mask"],
466
+ labels=batch["labels"],
467
+ labels_attention_mask=batch["labels_attention_mask"],
468
+ speaker_id=batch["speaker_id"],
469
+
470
+
471
+ return_dict=True,
472
+
473
+ )
474
+
475
+ mel_scaled_labels = batch["mel_scaled_input_features"]
476
+ mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size)
477
+ mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1]
478
+ loss = loss_mel.detach().item()
479
+ eval_losses_sum +=loss
480
+
481
+ loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
482
+ print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ")
483
+
484
+
485
+
486
+ with torch.no_grad():
487
+ full_generation_sample = self.full_generation_sample
488
+ full_generation =self.forward(
489
+ input_ids =full_generation_sample["input_ids"],
490
+ attention_mask=full_generation_sample["attention_mask"],
491
+ speaker_id=speaker_id_c
492
+ )
493
+
494
+ full_generation_waveform = full_generation.waveform.cpu().numpy()
495
+
496
+ wandb.log({
497
+ "eval_losses": eval_losses_sum,
498
+ "full generations samples": [
499
+ wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000)
500
+ for w in full_generation_waveform],})
501
+ step+=1
502
+ # wandb.log({"train_losses":loss_melall})
503
+ wandb.log({"loss_gen":loss_gen/step})
504
+ wandb.log({"loss_des":loss_des/step})
505
+ wandb.log({"loss_duration":loss_durationsall/step})
506
+ wandb.log({"loss_mel":loss_melall/step})
507
+ wandb.log({f"loss_kl_db{speaker_id}":loss_klall/step})
508
+ print(']',end='')
509
+
510
+
511
+
512
+
513
+ # self.save_pretrained(path_save_model)
514
+
515
+
516
+ self.discriminator=discriminator
517
+ for disc in self.discriminator.discriminators:
518
+ disc.remove_weight_norm()
519
+ self.decoder.remove_weight_norm()
520
+ # torch.nn.utils.remove_weight_norm(self.decoder.conv_pre)
521
+ # torch.nn.utils.remove_weight_norm(self.decoder.conv_post)
522
+ for flow in self.flow.flows:
523
+ torch.nn.utils.remove_weight_norm(flow.conv_pre)
524
+ torch.nn.utils.remove_weight_norm(flow.conv_post)
525
+
526
+ self.save_pretrained(path_save_model)
527
+
528
+ logger.info("Running final full generations samples... ")
529
+
530
+
531
+
532
+ logger.info("***** Training / Inference Done *****")
533
  def modelspeech(texts):
534
 
535