Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -589,41 +589,43 @@ dir_model='wasmdashai/vits-ar-huba-fine'
|
|
589 |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
590 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
591 |
|
592 |
-
for i in range(10000):
|
593 |
-
# model.train(True)
|
594 |
-
print(f'clcye epochs ={i}')
|
595 |
-
model=VitsModel.from_pretrained(dir_model,token=token).to(device)
|
596 |
-
# model.setMfA(monotonic_align.maximum_path)
|
597 |
-
#dir_model_save=dir_model+'/vend'
|
598 |
-
|
599 |
-
|
600 |
-
trainer_to_cuda(model,
|
601 |
-
ctrain_datasets = ctrain_datasets,
|
602 |
-
eval_dataset = eval_dataset,
|
603 |
-
full_generation_dataset = ctrain_datasets[0][0],
|
604 |
-
feature_extractor = VitsFeatureExtractor(),
|
605 |
-
training_args = training_args,
|
606 |
-
full_generation_sample_index= -1,
|
607 |
-
project_name = "AZ",
|
608 |
-
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
|
609 |
-
is_used_text_encoder=True,
|
610 |
-
is_used_posterior_encode=True,
|
611 |
-
# dict_state_grad_loss=sgl,
|
612 |
-
nk=50,
|
613 |
-
path_save_model=dir_model,
|
614 |
-
maf=model.monotonic_align_max_path,
|
615 |
-
|
616 |
-
n_back_save_model=3000,
|
617 |
-
start_speeker=0,
|
618 |
-
end_speeker=1,
|
619 |
-
n_epoch=i*training_args.num_train_epochs,
|
620 |
|
621 |
|
622 |
-
)
|
623 |
-
|
624 |
def greet(text,id):
|
625 |
global GK
|
626 |
b=int(id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
627 |
while True:
|
628 |
GK+=1
|
629 |
texts=[text]*b
|
|
|
589 |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
590 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
591 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
|
593 |
|
|
|
|
|
594 |
def greet(text,id):
|
595 |
global GK
|
596 |
b=int(id)
|
597 |
+
for i in range(10000):
|
598 |
+
# model.train(True)
|
599 |
+
print(f'clcye epochs ={i}')
|
600 |
+
yield f'clcye epochs ={i}'
|
601 |
+
model=VitsModel.from_pretrained(dir_model,token=token).to(device)
|
602 |
+
# model.setMfA(monotonic_align.maximum_path)
|
603 |
+
#dir_model_save=dir_model+'/vend'
|
604 |
+
|
605 |
+
|
606 |
+
trainer_to_cuda(model,
|
607 |
+
ctrain_datasets = ctrain_datasets,
|
608 |
+
eval_dataset = eval_dataset,
|
609 |
+
full_generation_dataset = ctrain_datasets[0][0],
|
610 |
+
feature_extractor = VitsFeatureExtractor(),
|
611 |
+
training_args = training_args,
|
612 |
+
full_generation_sample_index= -1,
|
613 |
+
project_name = "AZ",
|
614 |
+
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
|
615 |
+
is_used_text_encoder=True,
|
616 |
+
is_used_posterior_encode=True,
|
617 |
+
# dict_state_grad_loss=sgl,
|
618 |
+
nk=50,
|
619 |
+
path_save_model=dir_model,
|
620 |
+
maf=model.monotonic_align_max_path,
|
621 |
+
|
622 |
+
n_back_save_model=3000,
|
623 |
+
start_speeker=0,
|
624 |
+
end_speeker=1,
|
625 |
+
n_epoch=i*training_args.num_train_epochs,
|
626 |
+
|
627 |
+
|
628 |
+
)
|
629 |
while True:
|
630 |
GK+=1
|
631 |
texts=[text]*b
|