wasmdashai commited on
Commit
1f1eee1
·
verified ·
1 Parent(s): e8da50c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -30
app.py CHANGED
@@ -589,41 +589,43 @@ dir_model='wasmdashai/vits-ar-huba-fine'
589
  wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
590
  wandb.init(project= 'AZ',config = training_args.to_dict())
591
 
592
- for i in range(10000):
593
- # model.train(True)
594
- print(f'clcye epochs ={i}')
595
- model=VitsModel.from_pretrained(dir_model,token=token).to(device)
596
- # model.setMfA(monotonic_align.maximum_path)
597
- #dir_model_save=dir_model+'/vend'
598
-
599
-
600
- trainer_to_cuda(model,
601
- ctrain_datasets = ctrain_datasets,
602
- eval_dataset = eval_dataset,
603
- full_generation_dataset = ctrain_datasets[0][0],
604
- feature_extractor = VitsFeatureExtractor(),
605
- training_args = training_args,
606
- full_generation_sample_index= -1,
607
- project_name = "AZ",
608
- wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
609
- is_used_text_encoder=True,
610
- is_used_posterior_encode=True,
611
- # dict_state_grad_loss=sgl,
612
- nk=50,
613
- path_save_model=dir_model,
614
- maf=model.monotonic_align_max_path,
615
-
616
- n_back_save_model=3000,
617
- start_speeker=0,
618
- end_speeker=1,
619
- n_epoch=i*training_args.num_train_epochs,
620
 
621
 
622
- )
623
-
624
  def greet(text,id):
625
  global GK
626
  b=int(id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627
  while True:
628
  GK+=1
629
  texts=[text]*b
 
589
  wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
590
  wandb.init(project= 'AZ',config = training_args.to_dict())
591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592
 
593
 
 
 
594
  def greet(text,id):
595
  global GK
596
  b=int(id)
597
+ for i in range(10000):
598
+ # model.train(True)
599
+ print(f'clcye epochs ={i}')
600
+ yield f'clcye epochs ={i}'
601
+ model=VitsModel.from_pretrained(dir_model,token=token).to(device)
602
+ # model.setMfA(monotonic_align.maximum_path)
603
+ #dir_model_save=dir_model+'/vend'
604
+
605
+
606
+ trainer_to_cuda(model,
607
+ ctrain_datasets = ctrain_datasets,
608
+ eval_dataset = eval_dataset,
609
+ full_generation_dataset = ctrain_datasets[0][0],
610
+ feature_extractor = VitsFeatureExtractor(),
611
+ training_args = training_args,
612
+ full_generation_sample_index= -1,
613
+ project_name = "AZ",
614
+ wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
615
+ is_used_text_encoder=True,
616
+ is_used_posterior_encode=True,
617
+ # dict_state_grad_loss=sgl,
618
+ nk=50,
619
+ path_save_model=dir_model,
620
+ maf=model.monotonic_align_max_path,
621
+
622
+ n_back_save_model=3000,
623
+ start_speeker=0,
624
+ end_speeker=1,
625
+ n_epoch=i*training_args.num_train_epochs,
626
+
627
+
628
+ )
629
  while True:
630
  GK+=1
631
  texts=[text]*b