Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -181,6 +181,7 @@ def get_data_loader(train_dataset_dirs,eval_dataset_dir,full_generation_dir,dev
|
|
181 |
device = device)
|
182 |
return ctrain_datasets,eval_dataset,full_generation_dataset
|
183 |
global_step=0
|
|
|
184 |
def trainer_to_cuda(self,
|
185 |
ctrain_datasets = None,
|
186 |
eval_dataset = None,
|
@@ -563,7 +564,7 @@ dir_model='wasmdashai/vits-ar-huba-fine'
|
|
563 |
|
564 |
|
565 |
global_step=0
|
566 |
-
|
567 |
@spaces.GPU
|
568 |
def greet(text,id):
|
569 |
global GK
|
@@ -595,9 +596,9 @@ def greet(text,id):
|
|
595 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
596 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
597 |
device=device)
|
598 |
-
|
599 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
600 |
-
|
601 |
for i in range(10000):
|
602 |
# model.train(True)
|
603 |
print(f'clcye epochs ={i}')
|
@@ -605,7 +606,7 @@ def greet(text,id):
|
|
605 |
model=VitsModel.from_pretrained(dir_model,token=token).to(device)
|
606 |
# model.setMfA(monotonic_align.maximum_path)
|
607 |
#dir_model_save=dir_model+'/vend'
|
608 |
-
|
609 |
|
610 |
trainer_to_cuda(model,
|
611 |
ctrain_datasets = ctrain_datasets,
|
|
|
181 |
device = device)
|
182 |
return ctrain_datasets,eval_dataset,full_generation_dataset
|
183 |
global_step=0
|
184 |
+
@spaces.GPU
|
185 |
def trainer_to_cuda(self,
|
186 |
ctrain_datasets = None,
|
187 |
eval_dataset = None,
|
|
|
564 |
|
565 |
|
566 |
global_step=0
|
567 |
+
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
568 |
@spaces.GPU
|
569 |
def greet(text,id):
|
570 |
global GK
|
|
|
596 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
597 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
598 |
device=device)
|
599 |
+
|
600 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
601 |
+
print('wandb')
|
602 |
for i in range(10000):
|
603 |
# model.train(True)
|
604 |
print(f'clcye epochs ={i}')
|
|
|
606 |
model=VitsModel.from_pretrained(dir_model,token=token).to(device)
|
607 |
# model.setMfA(monotonic_align.maximum_path)
|
608 |
#dir_model_save=dir_model+'/vend'
|
609 |
+
print('loadeed')
|
610 |
|
611 |
trainer_to_cuda(model,
|
612 |
ctrain_datasets = ctrain_datasets,
|