wasmdashai commited on
Commit
5775b1d
·
verified ·
1 Parent(s): 6b42195

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -181,6 +181,7 @@ def get_data_loader(train_dataset_dirs,eval_dataset_dir,full_generation_dir,dev
181
  device = device)
182
  return ctrain_datasets,eval_dataset,full_generation_dataset
183
  global_step=0
 
184
  def trainer_to_cuda(self,
185
  ctrain_datasets = None,
186
  eval_dataset = None,
@@ -563,7 +564,7 @@ dir_model='wasmdashai/vits-ar-huba-fine'
563
 
564
 
565
  global_step=0
566
-
567
  @spaces.GPU
568
  def greet(text,id):
569
  global GK
@@ -595,9 +596,9 @@ def greet(text,id):
595
  eval_dataset_dir = os.path.join(dataset_dir,'eval'),
596
  full_generation_dir = os.path.join(dataset_dir,'full_generation'),
597
  device=device)
598
- wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
599
  wandb.init(project= 'AZ',config = training_args.to_dict())
600
-
601
  for i in range(10000):
602
  # model.train(True)
603
  print(f'clcye epochs ={i}')
@@ -605,7 +606,7 @@ def greet(text,id):
605
  model=VitsModel.from_pretrained(dir_model,token=token).to(device)
606
  # model.setMfA(monotonic_align.maximum_path)
607
  #dir_model_save=dir_model+'/vend'
608
-
609
 
610
  trainer_to_cuda(model,
611
  ctrain_datasets = ctrain_datasets,
 
181
  device = device)
182
  return ctrain_datasets,eval_dataset,full_generation_dataset
183
  global_step=0
184
+ @spaces.GPU
185
  def trainer_to_cuda(self,
186
  ctrain_datasets = None,
187
  eval_dataset = None,
 
564
 
565
 
566
  global_step=0
567
+ wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
568
  @spaces.GPU
569
  def greet(text,id):
570
  global GK
 
596
  eval_dataset_dir = os.path.join(dataset_dir,'eval'),
597
  full_generation_dir = os.path.join(dataset_dir,'full_generation'),
598
  device=device)
599
+
600
  wandb.init(project= 'AZ',config = training_args.to_dict())
601
+ print('wandb')
602
  for i in range(10000):
603
  # model.train(True)
604
  print(f'clcye epochs ={i}')
 
606
  model=VitsModel.from_pretrained(dir_model,token=token).to(device)
607
  # model.setMfA(monotonic_align.maximum_path)
608
  #dir_model_save=dir_model+'/vend'
609
+ print('loadeed')
610
 
611
  trainer_to_cuda(model,
612
  ctrain_datasets = ctrain_datasets,