Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -407,7 +407,47 @@ class TrinerModelVITS:
|
|
407 |
self.len_dataset=len(self.DataSets['train'])
|
408 |
self.load_model()
|
409 |
self.init_wandb()
|
|
|
|
|
410 |
scaler = GradScaler(enabled=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
|
413 |
|
|
|
407 |
self.len_dataset=len(self.DataSets['train'])
|
408 |
self.load_model()
|
409 |
self.init_wandb()
|
410 |
+
self.training_args=load_training_args(self.path_training_args)
|
411 |
+
training_args= self.training_args
|
412 |
scaler = GradScaler(enabled=True)
|
413 |
+
for disc in self.model.discriminator.discriminators:
|
414 |
+
disc.apply_weight_norm()
|
415 |
+
self.model.decoder.apply_weight_norm()
|
416 |
+
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
|
417 |
+
# torch.nn.utils.weight_norm(self.decoder.conv_post)
|
418 |
+
for flow in self.model.flow.flows:
|
419 |
+
torch.nn.utils.weight_norm(flow.conv_pre)
|
420 |
+
torch.nn.utils.weight_norm(flow.conv_post)
|
421 |
+
|
422 |
+
discriminator = self.model.discriminator
|
423 |
+
self.model.discriminator = None
|
424 |
+
|
425 |
+
optimizer = torch.optim.AdamW(
|
426 |
+
self.model.parameters(),
|
427 |
+
training_args.learning_rate,
|
428 |
+
betas=[training_args.adam_beta1, training_args.adam_beta2],
|
429 |
+
eps=training_args.adam_epsilon,
|
430 |
+
)
|
431 |
+
|
432 |
+
# Hack to be able to train on multiple device
|
433 |
+
disc_optimizer = torch.optim.AdamW(
|
434 |
+
discriminator.parameters(),
|
435 |
+
training_args.d_learning_rate,
|
436 |
+
betas=[training_args.d_adam_beta1, training_args.d_adam_beta2],
|
437 |
+
eps=training_args.adam_epsilon,
|
438 |
+
)
|
439 |
+
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
440 |
+
optimizer, gamma=training_args.lr_decay, last_epoch=-1
|
441 |
+
)
|
442 |
+
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
443 |
+
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1
|
444 |
+
)
|
445 |
+
self.models=(self.model,discriminator)
|
446 |
+
self.optimizers=(optimizer,disc_optimizer,scaler)
|
447 |
+
self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
|
448 |
+
self.tools=load_tools()
|
449 |
+
self.stute_mode=True
|
450 |
+
print(self.lr_schedulers)
|
451 |
|
452 |
|
453 |
|