wasmdashai commited on
Commit
a0a07a4
·
verified ·
1 Parent(s): 9bf2b47

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -45,7 +45,10 @@ class model_onxx:
45
 
46
 
47
 
48
-
 
 
 
49
  def function_change(self,n_model,token,n_onxx,choice):
50
  if choice=="decoder":
51
 
@@ -67,15 +70,13 @@ class model_onxx:
67
  def convert_to_onnx_only_decoder(self,n_model,token,namemodelonxx):
68
  model=VitsModel.from_pretrained(n_model,token=token)
69
  x=f"{namemodelonxx}.onnx"
70
- if not os.path.exists("uploads"):
71
- os.makedirs(storage_dir)
72
- file_path = os.path.join("uploads",x)
73
  vocab_size = model.text_encoder.embed_tokens.weight.size(0)
74
  example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
75
  torch.onnx.export(
76
  model, # The model to be exported
77
  example_input, # Example input for the model
78
- file_path, # The filename for the exported ONNX model
79
  opset_version=11, # Use an appropriate ONNX opset version
80
  input_names=['input'], # Name of the input layer
81
  output_names=['output'], # Name of the output layer
@@ -84,7 +85,7 @@ class model_onxx:
84
  'output': {0: 'batch_size'}
85
  }
86
  )
87
- return file_path
88
  def convert_to_onnx_all(self,n_model,token ,namemodelonxx):
89
 
90
  model=VitsModel.from_pretrained(n_model,token=token)
@@ -104,7 +105,7 @@ class model_onxx:
104
  'output': {0: 'batch_size'}
105
  }
106
  )
107
- return x
108
  def starrt(self):
109
  #with gr.Blocks() as demo:
110
  with gr.Row():
 
45
 
46
 
47
 
48
+ def download_file(self,file_path):
49
+ ff= gr.File(value=file_path, visible=True)
50
+ file_url = ff.value['url']
51
+ return file_url
52
  def function_change(self,n_model,token,n_onxx,choice):
53
  if choice=="decoder":
54
 
 
70
  def convert_to_onnx_only_decoder(self,n_model,token,namemodelonxx):
71
  model=VitsModel.from_pretrained(n_model,token=token)
72
  x=f"{namemodelonxx}.onnx"
73
+
 
 
74
  vocab_size = model.text_encoder.embed_tokens.weight.size(0)
75
  example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
76
  torch.onnx.export(
77
  model, # The model to be exported
78
  example_input, # Example input for the model
79
+ x, # The filename for the exported ONNX model
80
  opset_version=11, # Use an appropriate ONNX opset version
81
  input_names=['input'], # Name of the input layer
82
  output_names=['output'], # Name of the output layer
 
85
  'output': {0: 'batch_size'}
86
  }
87
  )
88
+ return self.download_file(x)
89
  def convert_to_onnx_all(self,n_model,token ,namemodelonxx):
90
 
91
  model=VitsModel.from_pretrained(n_model,token=token)
 
105
  'output': {0: 'batch_size'}
106
  }
107
  )
108
+ return self.download_file(x)
109
  def starrt(self):
110
  #with gr.Blocks() as demo:
111
  with gr.Row():