Spaces:
Running
on
Zero
Running
on
Zero
Delete VitsModelSplit/vits_models_only_decoder .py
Browse files
VitsModelSplit/vits_models_only_decoder .py
DELETED
@@ -1,431 +0,0 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
import math
|
6 |
-
from typing import Any, Callable, Optional, Tuple, Union
|
7 |
-
from torch.cuda.amp import autocast, GradScaler
|
8 |
-
|
9 |
-
from .vits_config import VitsConfig,VitsPreTrainedModel
|
10 |
-
from .flow import VitsResidualCouplingBlock
|
11 |
-
from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
|
12 |
-
from .encoder import VitsTextEncoder
|
13 |
-
from .decoder import VitsHifiGan
|
14 |
-
from .posterior_encoder import VitsPosteriorEncoder
|
15 |
-
from .discriminator import VitsDiscriminator
|
16 |
-
from .vits_output import VitsModelOutput, VitsTrainingOutput
|
17 |
-
|
18 |
-
|
19 |
-
class Vits_models_only_decoder(VitsPreTrainedModel):
|
20 |
-
|
21 |
-
def __init__(self, config: VitsConfig):
|
22 |
-
super().__init__(config)
|
23 |
-
|
24 |
-
self.config = config
|
25 |
-
self.text_encoder = VitsTextEncoder(config)
|
26 |
-
self.flow = VitsResidualCouplingBlock(config)
|
27 |
-
self.decoder = VitsHifiGan(config)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
if config.use_stochastic_duration_prediction:
|
32 |
-
self.duration_predictor = VitsStochasticDurationPredictor(config)
|
33 |
-
else:
|
34 |
-
self.duration_predictor = VitsDurationPredictor(config)
|
35 |
-
|
36 |
-
if config.num_speakers > 1:
|
37 |
-
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
|
38 |
-
|
39 |
-
# This is used only for training.
|
40 |
-
self.posterior_encoder = VitsPosteriorEncoder(config)
|
41 |
-
self.discriminator = VitsDiscriminator(config)
|
42 |
-
|
43 |
-
# These parameters control the synthesised speech properties
|
44 |
-
self.speaking_rate = config.speaking_rate
|
45 |
-
self.noise_scale = config.noise_scale
|
46 |
-
self.noise_scale_duration = config.noise_scale_duration
|
47 |
-
self.segment_size = self.config.segment_size // self.config.hop_length
|
48 |
-
|
49 |
-
# Initialize weights and apply final processing
|
50 |
-
self.post_init()
|
51 |
-
|
52 |
-
|
53 |
-
#....................................
|
54 |
-
|
55 |
-
def monotonic_align_max_path(self,log_likelihoods, mask):
|
56 |
-
# used for training - awfully slow
|
57 |
-
# an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
|
58 |
-
path = torch.zeros_like(log_likelihoods)
|
59 |
-
|
60 |
-
text_length_maxs = mask.sum(1)[:, 0]
|
61 |
-
latent_length_maxs = mask.sum(2)[:, 0]
|
62 |
-
|
63 |
-
indexes = latent_length_maxs - 1
|
64 |
-
|
65 |
-
max_neg_val = -1e9
|
66 |
-
|
67 |
-
for batch_id in range(len(path)):
|
68 |
-
index = int(indexes[batch_id].item())
|
69 |
-
text_length_max = int(text_length_maxs[batch_id].item())
|
70 |
-
latent_length_max = int(latent_length_maxs[batch_id].item())
|
71 |
-
|
72 |
-
for y in range(text_length_max):
|
73 |
-
for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
|
74 |
-
if x == y:
|
75 |
-
v_cur = max_neg_val
|
76 |
-
else:
|
77 |
-
v_cur = log_likelihoods[batch_id, y - 1, x]
|
78 |
-
if x == 0:
|
79 |
-
if y == 0:
|
80 |
-
v_prev = 0.0
|
81 |
-
else:
|
82 |
-
v_prev = max_neg_val
|
83 |
-
else:
|
84 |
-
v_prev = log_likelihoods[batch_id, y - 1, x - 1]
|
85 |
-
log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
|
86 |
-
|
87 |
-
for y in range(text_length_max - 1, -1, -1):
|
88 |
-
path[batch_id, y, index] = 1
|
89 |
-
if index != 0 and (
|
90 |
-
index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
|
91 |
-
):
|
92 |
-
index = index - 1
|
93 |
-
return path
|
94 |
-
|
95 |
-
#....................................
|
96 |
-
|
97 |
-
def slice_segments(self,hidden_states, ids_str, segment_size=4):
|
98 |
-
|
99 |
-
batch_size, channels, _ = hidden_states.shape
|
100 |
-
# 1d tensor containing the indices to keep
|
101 |
-
indices = torch.arange(segment_size).to(ids_str.device)
|
102 |
-
# extend the indices to match the shape of hidden_states
|
103 |
-
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
|
104 |
-
# offset indices with ids_str
|
105 |
-
indices = indices + ids_str.view(-1, 1, 1)
|
106 |
-
# gather indices
|
107 |
-
output = torch.gather(hidden_states, dim=2, index=indices)
|
108 |
-
|
109 |
-
return output
|
110 |
-
|
111 |
-
|
112 |
-
#....................................
|
113 |
-
|
114 |
-
|
115 |
-
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
|
116 |
-
|
117 |
-
batch_size, _, seq_len = hidden_states.size()
|
118 |
-
if sample_lengths is None:
|
119 |
-
sample_lengths = seq_len
|
120 |
-
ids_str_max = sample_lengths - segment_size + 1
|
121 |
-
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
|
122 |
-
ret = self.slice_segments(hidden_states, ids_str, segment_size)
|
123 |
-
|
124 |
-
return ret, ids_str
|
125 |
-
|
126 |
-
#....................................
|
127 |
-
|
128 |
-
def resize_speaker_embeddings(
|
129 |
-
self,
|
130 |
-
new_num_speakers: int,
|
131 |
-
speaker_embedding_size: Optional[int] = None,
|
132 |
-
pad_to_multiple_of: Optional[int] = 2,
|
133 |
-
):
|
134 |
-
if pad_to_multiple_of is not None:
|
135 |
-
new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
|
136 |
-
|
137 |
-
# first, take care of embed_speaker
|
138 |
-
if self.config.num_speakers <= 1:
|
139 |
-
if speaker_embedding_size is None:
|
140 |
-
raise ValueError(
|
141 |
-
"The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
|
142 |
-
)
|
143 |
-
# create new embedding layer
|
144 |
-
new_embeddings = nn.Embedding(
|
145 |
-
new_num_speakers,
|
146 |
-
speaker_embedding_size,
|
147 |
-
device=self.device,
|
148 |
-
)
|
149 |
-
# initialize all new embeddings
|
150 |
-
self._init_weights(new_embeddings)
|
151 |
-
else:
|
152 |
-
new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
|
153 |
-
|
154 |
-
self.embed_speaker = new_embeddings
|
155 |
-
|
156 |
-
# then take care of sub-models
|
157 |
-
self.flow.resize_speaker_embeddings(speaker_embedding_size)
|
158 |
-
for flow in self.flow.flows:
|
159 |
-
self._init_weights(flow.wavenet.cond_layer)
|
160 |
-
|
161 |
-
self.decoder.resize_speaker_embedding(speaker_embedding_size)
|
162 |
-
self._init_weights(self.decoder.cond)
|
163 |
-
|
164 |
-
self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
|
165 |
-
self._init_weights(self.duration_predictor.cond)
|
166 |
-
|
167 |
-
self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
|
168 |
-
self._init_weights(self.posterior_encoder.wavenet.cond_layer)
|
169 |
-
|
170 |
-
self.config.num_speakers = new_num_speakers
|
171 |
-
self.config.speaker_embedding_size = speaker_embedding_size
|
172 |
-
|
173 |
-
#....................................
|
174 |
-
|
175 |
-
def get_input_embeddings(self):
|
176 |
-
return self.text_encoder.get_input_embeddings()
|
177 |
-
|
178 |
-
#....................................
|
179 |
-
|
180 |
-
def set_input_embeddings(self, value):
|
181 |
-
self.text_encoder.set_input_embeddings(value)
|
182 |
-
|
183 |
-
#....................................
|
184 |
-
|
185 |
-
def apply_weight_norm(self):
|
186 |
-
self.decoder.apply_weight_norm()
|
187 |
-
self.flow.apply_weight_norm()
|
188 |
-
self.posterior_encoder.apply_weight_norm()
|
189 |
-
|
190 |
-
#....................................
|
191 |
-
|
192 |
-
def remove_weight_norm(self):
|
193 |
-
self.decoder.remove_weight_norm()
|
194 |
-
self.flow.remove_weight_norm()
|
195 |
-
self.posterior_encoder.remove_weight_norm()
|
196 |
-
|
197 |
-
#....................................
|
198 |
-
|
199 |
-
def discriminate(self, hidden_states):
|
200 |
-
return self.discriminator(hidden_states)
|
201 |
-
|
202 |
-
#....................................
|
203 |
-
|
204 |
-
def get_encoder(self):
|
205 |
-
return self.text_encoder
|
206 |
-
|
207 |
-
#....................................
|
208 |
-
|
209 |
-
def _inference_forward(
|
210 |
-
self,
|
211 |
-
input_ids: Optional[torch.Tensor] = None,
|
212 |
-
attention_mask: Optional[torch.Tensor] = None,
|
213 |
-
speaker_embeddings: Optional[torch.Tensor] = None,
|
214 |
-
output_attentions: Optional[bool] = None,
|
215 |
-
output_hidden_states: Optional[bool] = None,
|
216 |
-
return_dict: Optional[bool] = None,
|
217 |
-
padding_mask: Optional[torch.Tensor] = None,
|
218 |
-
):
|
219 |
-
text_encoder_output = self.text_encoder(
|
220 |
-
input_ids=input_ids,
|
221 |
-
padding_mask=padding_mask,
|
222 |
-
attention_mask=attention_mask,
|
223 |
-
output_attentions=output_attentions,
|
224 |
-
output_hidden_states=output_hidden_states,
|
225 |
-
return_dict=return_dict,
|
226 |
-
)
|
227 |
-
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
|
228 |
-
hidden_states = hidden_states.transpose(1, 2)
|
229 |
-
input_padding_mask = padding_mask.transpose(1, 2)
|
230 |
-
|
231 |
-
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
|
232 |
-
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
|
233 |
-
|
234 |
-
if self.config.use_stochastic_duration_prediction:
|
235 |
-
log_duration = self.duration_predictor(
|
236 |
-
hidden_states,
|
237 |
-
input_padding_mask,
|
238 |
-
speaker_embeddings,
|
239 |
-
reverse=True,
|
240 |
-
noise_scale=self.noise_scale_duration,
|
241 |
-
)
|
242 |
-
else:
|
243 |
-
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
|
244 |
-
|
245 |
-
length_scale = 1.0 / self.speaking_rate
|
246 |
-
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
|
247 |
-
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
|
248 |
-
|
249 |
-
|
250 |
-
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
|
251 |
-
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
|
252 |
-
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
253 |
-
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
|
254 |
-
|
255 |
-
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
|
256 |
-
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
|
257 |
-
batch_size, _, output_length, input_length = attn_mask.shape
|
258 |
-
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
|
259 |
-
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
|
260 |
-
valid_indices = indices.unsqueeze(0) < cum_duration
|
261 |
-
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
|
262 |
-
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
|
263 |
-
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
|
264 |
-
|
265 |
-
# Expand prior distribution
|
266 |
-
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
|
267 |
-
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
|
268 |
-
|
269 |
-
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
|
270 |
-
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
|
271 |
-
|
272 |
-
spectrogram = latents * output_padding_mask
|
273 |
-
return spectrogram
|
274 |
-
|
275 |
-
def forward(
|
276 |
-
self,
|
277 |
-
input_ids: Optional[torch.Tensor] = None,
|
278 |
-
attention_mask: Optional[torch.Tensor] = None,
|
279 |
-
speaker_id: Optional[int] = None,
|
280 |
-
output_attentions: Optional[bool] = None,
|
281 |
-
output_hidden_states: Optional[bool] = None,
|
282 |
-
return_dict: Optional[bool] = None,
|
283 |
-
labels: Optional[torch.FloatTensor] = None,
|
284 |
-
labels_attention_mask: Optional[torch.Tensor] = None,
|
285 |
-
monotonic_alignment_function: Optional[Callable] = None,
|
286 |
-
) -> Union[Tuple[Any], VitsModelOutput]:
|
287 |
-
|
288 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
289 |
-
output_hidden_states = (
|
290 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
291 |
-
)
|
292 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
293 |
-
|
294 |
-
monotonic_alignment_function = (
|
295 |
-
self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function
|
296 |
-
)
|
297 |
-
|
298 |
-
if attention_mask is not None:
|
299 |
-
input_padding_mask = attention_mask.unsqueeze(-1).float()
|
300 |
-
else:
|
301 |
-
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
|
302 |
-
|
303 |
-
if self.config.num_speakers > 1 and speaker_id is not None:
|
304 |
-
if isinstance(speaker_id, int):
|
305 |
-
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
|
306 |
-
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
|
307 |
-
speaker_id = torch.tensor(speaker_id, device=self.device)
|
308 |
-
|
309 |
-
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
|
310 |
-
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
|
311 |
-
if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))):
|
312 |
-
raise ValueError(
|
313 |
-
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
|
314 |
-
)
|
315 |
-
|
316 |
-
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
|
317 |
-
else:
|
318 |
-
speaker_embeddings = None
|
319 |
-
|
320 |
-
# if inference, return inference forward of VitsModel
|
321 |
-
if labels is None:
|
322 |
-
return self._inference_forward(
|
323 |
-
input_ids,
|
324 |
-
attention_mask,
|
325 |
-
speaker_embeddings,
|
326 |
-
output_attentions,
|
327 |
-
output_hidden_states,
|
328 |
-
return_dict,
|
329 |
-
input_padding_mask,
|
330 |
-
)
|
331 |
-
|
332 |
-
if labels_attention_mask is not None:
|
333 |
-
labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
|
334 |
-
else:
|
335 |
-
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
|
336 |
-
labels_padding_mask = labels_attention_mask.unsqueeze(1)
|
337 |
-
|
338 |
-
text_encoder_output = self.text_encoder(
|
339 |
-
input_ids=input_ids,
|
340 |
-
padding_mask=input_padding_mask,
|
341 |
-
attention_mask=attention_mask,
|
342 |
-
output_attentions=output_attentions,
|
343 |
-
output_hidden_states=output_hidden_states,
|
344 |
-
return_dict=return_dict,
|
345 |
-
)
|
346 |
-
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
|
347 |
-
hidden_states = hidden_states.transpose(1, 2)
|
348 |
-
input_padding_mask = input_padding_mask.transpose(1, 2)
|
349 |
-
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
|
350 |
-
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
|
351 |
-
|
352 |
-
latents, posterior_means, posterior_log_variances = self.posterior_encoder(
|
353 |
-
labels, labels_padding_mask, speaker_embeddings
|
354 |
-
)
|
355 |
-
prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False)
|
356 |
-
|
357 |
-
prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2)
|
358 |
-
with torch.no_grad():
|
359 |
-
# negative cross-entropy
|
360 |
-
|
361 |
-
# [batch_size, d, latent_length]
|
362 |
-
prior_variances = torch.exp(-2 * prior_log_variances)
|
363 |
-
# [batch_size, 1, latent_length]
|
364 |
-
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True)
|
365 |
-
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
|
366 |
-
neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances)
|
367 |
-
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
|
368 |
-
neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances))
|
369 |
-
# [batch_size, 1, latent_length]
|
370 |
-
neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True)
|
371 |
-
|
372 |
-
# [batch_size, text_length, latent_length]
|
373 |
-
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
374 |
-
|
375 |
-
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1)
|
376 |
-
|
377 |
-
attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
378 |
-
|
379 |
-
durations = attn.sum(2)
|
380 |
-
|
381 |
-
if self.config.use_stochastic_duration_prediction:
|
382 |
-
log_duration = self.duration_predictor(
|
383 |
-
hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False
|
384 |
-
)
|
385 |
-
log_duration = log_duration / torch.sum(input_padding_mask)
|
386 |
-
else:
|
387 |
-
log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask
|
388 |
-
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
|
389 |
-
log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask)
|
390 |
-
|
391 |
-
# expand priors
|
392 |
-
prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2)
|
393 |
-
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2)
|
394 |
-
|
395 |
-
label_lengths = labels_attention_mask.sum(dim=1)
|
396 |
-
latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size)
|
397 |
-
|
398 |
-
waveform = self.decoder(latents_slice, speaker_embeddings)
|
399 |
-
|
400 |
-
if not return_dict:
|
401 |
-
outputs = (
|
402 |
-
waveform,
|
403 |
-
log_duration,
|
404 |
-
attn,
|
405 |
-
ids_slice,
|
406 |
-
input_padding_mask,
|
407 |
-
labels_padding_mask,
|
408 |
-
latents,
|
409 |
-
prior_latents,
|
410 |
-
prior_means,
|
411 |
-
prior_log_variances,
|
412 |
-
posterior_means,
|
413 |
-
posterior_log_variances,
|
414 |
-
)
|
415 |
-
return outputs
|
416 |
-
|
417 |
-
return VitsTrainingOutput(
|
418 |
-
waveform=waveform,
|
419 |
-
log_duration=log_duration,
|
420 |
-
attn=attn,
|
421 |
-
ids_slice=ids_slice,
|
422 |
-
input_padding_mask=input_padding_mask,
|
423 |
-
labels_padding_mask=labels_padding_mask,
|
424 |
-
latents=latents,
|
425 |
-
prior_latents=prior_latents,
|
426 |
-
prior_means=prior_means,
|
427 |
-
prior_log_variances=prior_log_variances,
|
428 |
-
posterior_means=posterior_means,
|
429 |
-
posterior_log_variances=posterior_log_variances,
|
430 |
-
)
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|