wasmdashai commited on
Commit
a31b12c
·
verified ·
1 Parent(s): ca6b353

Delete VitsModelSplit/vits_models_only_decoder .py

Browse files
VitsModelSplit/vits_models_only_decoder .py DELETED
@@ -1,431 +0,0 @@
1
-
2
- import numpy as np
3
- import torch
4
- from torch import nn
5
- import math
6
- from typing import Any, Callable, Optional, Tuple, Union
7
- from torch.cuda.amp import autocast, GradScaler
8
-
9
- from .vits_config import VitsConfig,VitsPreTrainedModel
10
- from .flow import VitsResidualCouplingBlock
11
- from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
12
- from .encoder import VitsTextEncoder
13
- from .decoder import VitsHifiGan
14
- from .posterior_encoder import VitsPosteriorEncoder
15
- from .discriminator import VitsDiscriminator
16
- from .vits_output import VitsModelOutput, VitsTrainingOutput
17
-
18
-
19
- class Vits_models_only_decoder(VitsPreTrainedModel):
20
-
21
- def __init__(self, config: VitsConfig):
22
- super().__init__(config)
23
-
24
- self.config = config
25
- self.text_encoder = VitsTextEncoder(config)
26
- self.flow = VitsResidualCouplingBlock(config)
27
- self.decoder = VitsHifiGan(config)
28
-
29
-
30
-
31
- if config.use_stochastic_duration_prediction:
32
- self.duration_predictor = VitsStochasticDurationPredictor(config)
33
- else:
34
- self.duration_predictor = VitsDurationPredictor(config)
35
-
36
- if config.num_speakers > 1:
37
- self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
38
-
39
- # This is used only for training.
40
- self.posterior_encoder = VitsPosteriorEncoder(config)
41
- self.discriminator = VitsDiscriminator(config)
42
-
43
- # These parameters control the synthesised speech properties
44
- self.speaking_rate = config.speaking_rate
45
- self.noise_scale = config.noise_scale
46
- self.noise_scale_duration = config.noise_scale_duration
47
- self.segment_size = self.config.segment_size // self.config.hop_length
48
-
49
- # Initialize weights and apply final processing
50
- self.post_init()
51
-
52
-
53
- #....................................
54
-
55
- def monotonic_align_max_path(self,log_likelihoods, mask):
56
- # used for training - awfully slow
57
- # an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
58
- path = torch.zeros_like(log_likelihoods)
59
-
60
- text_length_maxs = mask.sum(1)[:, 0]
61
- latent_length_maxs = mask.sum(2)[:, 0]
62
-
63
- indexes = latent_length_maxs - 1
64
-
65
- max_neg_val = -1e9
66
-
67
- for batch_id in range(len(path)):
68
- index = int(indexes[batch_id].item())
69
- text_length_max = int(text_length_maxs[batch_id].item())
70
- latent_length_max = int(latent_length_maxs[batch_id].item())
71
-
72
- for y in range(text_length_max):
73
- for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
74
- if x == y:
75
- v_cur = max_neg_val
76
- else:
77
- v_cur = log_likelihoods[batch_id, y - 1, x]
78
- if x == 0:
79
- if y == 0:
80
- v_prev = 0.0
81
- else:
82
- v_prev = max_neg_val
83
- else:
84
- v_prev = log_likelihoods[batch_id, y - 1, x - 1]
85
- log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
86
-
87
- for y in range(text_length_max - 1, -1, -1):
88
- path[batch_id, y, index] = 1
89
- if index != 0 and (
90
- index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
91
- ):
92
- index = index - 1
93
- return path
94
-
95
- #....................................
96
-
97
- def slice_segments(self,hidden_states, ids_str, segment_size=4):
98
-
99
- batch_size, channels, _ = hidden_states.shape
100
- # 1d tensor containing the indices to keep
101
- indices = torch.arange(segment_size).to(ids_str.device)
102
- # extend the indices to match the shape of hidden_states
103
- indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
104
- # offset indices with ids_str
105
- indices = indices + ids_str.view(-1, 1, 1)
106
- # gather indices
107
- output = torch.gather(hidden_states, dim=2, index=indices)
108
-
109
- return output
110
-
111
-
112
- #....................................
113
-
114
-
115
- def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
116
-
117
- batch_size, _, seq_len = hidden_states.size()
118
- if sample_lengths is None:
119
- sample_lengths = seq_len
120
- ids_str_max = sample_lengths - segment_size + 1
121
- ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
122
- ret = self.slice_segments(hidden_states, ids_str, segment_size)
123
-
124
- return ret, ids_str
125
-
126
- #....................................
127
-
128
- def resize_speaker_embeddings(
129
- self,
130
- new_num_speakers: int,
131
- speaker_embedding_size: Optional[int] = None,
132
- pad_to_multiple_of: Optional[int] = 2,
133
- ):
134
- if pad_to_multiple_of is not None:
135
- new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
136
-
137
- # first, take care of embed_speaker
138
- if self.config.num_speakers <= 1:
139
- if speaker_embedding_size is None:
140
- raise ValueError(
141
- "The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
142
- )
143
- # create new embedding layer
144
- new_embeddings = nn.Embedding(
145
- new_num_speakers,
146
- speaker_embedding_size,
147
- device=self.device,
148
- )
149
- # initialize all new embeddings
150
- self._init_weights(new_embeddings)
151
- else:
152
- new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
153
-
154
- self.embed_speaker = new_embeddings
155
-
156
- # then take care of sub-models
157
- self.flow.resize_speaker_embeddings(speaker_embedding_size)
158
- for flow in self.flow.flows:
159
- self._init_weights(flow.wavenet.cond_layer)
160
-
161
- self.decoder.resize_speaker_embedding(speaker_embedding_size)
162
- self._init_weights(self.decoder.cond)
163
-
164
- self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
165
- self._init_weights(self.duration_predictor.cond)
166
-
167
- self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
168
- self._init_weights(self.posterior_encoder.wavenet.cond_layer)
169
-
170
- self.config.num_speakers = new_num_speakers
171
- self.config.speaker_embedding_size = speaker_embedding_size
172
-
173
- #....................................
174
-
175
- def get_input_embeddings(self):
176
- return self.text_encoder.get_input_embeddings()
177
-
178
- #....................................
179
-
180
- def set_input_embeddings(self, value):
181
- self.text_encoder.set_input_embeddings(value)
182
-
183
- #....................................
184
-
185
- def apply_weight_norm(self):
186
- self.decoder.apply_weight_norm()
187
- self.flow.apply_weight_norm()
188
- self.posterior_encoder.apply_weight_norm()
189
-
190
- #....................................
191
-
192
- def remove_weight_norm(self):
193
- self.decoder.remove_weight_norm()
194
- self.flow.remove_weight_norm()
195
- self.posterior_encoder.remove_weight_norm()
196
-
197
- #....................................
198
-
199
- def discriminate(self, hidden_states):
200
- return self.discriminator(hidden_states)
201
-
202
- #....................................
203
-
204
- def get_encoder(self):
205
- return self.text_encoder
206
-
207
- #....................................
208
-
209
- def _inference_forward(
210
- self,
211
- input_ids: Optional[torch.Tensor] = None,
212
- attention_mask: Optional[torch.Tensor] = None,
213
- speaker_embeddings: Optional[torch.Tensor] = None,
214
- output_attentions: Optional[bool] = None,
215
- output_hidden_states: Optional[bool] = None,
216
- return_dict: Optional[bool] = None,
217
- padding_mask: Optional[torch.Tensor] = None,
218
- ):
219
- text_encoder_output = self.text_encoder(
220
- input_ids=input_ids,
221
- padding_mask=padding_mask,
222
- attention_mask=attention_mask,
223
- output_attentions=output_attentions,
224
- output_hidden_states=output_hidden_states,
225
- return_dict=return_dict,
226
- )
227
- hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
228
- hidden_states = hidden_states.transpose(1, 2)
229
- input_padding_mask = padding_mask.transpose(1, 2)
230
-
231
- prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
232
- prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
233
-
234
- if self.config.use_stochastic_duration_prediction:
235
- log_duration = self.duration_predictor(
236
- hidden_states,
237
- input_padding_mask,
238
- speaker_embeddings,
239
- reverse=True,
240
- noise_scale=self.noise_scale_duration,
241
- )
242
- else:
243
- log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
244
-
245
- length_scale = 1.0 / self.speaking_rate
246
- duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
247
- predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
248
-
249
-
250
- # Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
251
- indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
252
- output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
253
- output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
254
-
255
- # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
256
- attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
257
- batch_size, _, output_length, input_length = attn_mask.shape
258
- cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
259
- indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
260
- valid_indices = indices.unsqueeze(0) < cum_duration
261
- valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
262
- padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
263
- attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
264
-
265
- # Expand prior distribution
266
- prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
267
- prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
268
-
269
- prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
270
- latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
271
-
272
- spectrogram = latents * output_padding_mask
273
- return spectrogram
274
-
275
- def forward(
276
- self,
277
- input_ids: Optional[torch.Tensor] = None,
278
- attention_mask: Optional[torch.Tensor] = None,
279
- speaker_id: Optional[int] = None,
280
- output_attentions: Optional[bool] = None,
281
- output_hidden_states: Optional[bool] = None,
282
- return_dict: Optional[bool] = None,
283
- labels: Optional[torch.FloatTensor] = None,
284
- labels_attention_mask: Optional[torch.Tensor] = None,
285
- monotonic_alignment_function: Optional[Callable] = None,
286
- ) -> Union[Tuple[Any], VitsModelOutput]:
287
-
288
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
289
- output_hidden_states = (
290
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
291
- )
292
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
293
-
294
- monotonic_alignment_function = (
295
- self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function
296
- )
297
-
298
- if attention_mask is not None:
299
- input_padding_mask = attention_mask.unsqueeze(-1).float()
300
- else:
301
- input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
302
-
303
- if self.config.num_speakers > 1 and speaker_id is not None:
304
- if isinstance(speaker_id, int):
305
- speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
306
- elif isinstance(speaker_id, (list, tuple, np.ndarray)):
307
- speaker_id = torch.tensor(speaker_id, device=self.device)
308
-
309
- if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
310
- raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
311
- if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))):
312
- raise ValueError(
313
- f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
314
- )
315
-
316
- speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
317
- else:
318
- speaker_embeddings = None
319
-
320
- # if inference, return inference forward of VitsModel
321
- if labels is None:
322
- return self._inference_forward(
323
- input_ids,
324
- attention_mask,
325
- speaker_embeddings,
326
- output_attentions,
327
- output_hidden_states,
328
- return_dict,
329
- input_padding_mask,
330
- )
331
-
332
- if labels_attention_mask is not None:
333
- labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
334
- else:
335
- labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
336
- labels_padding_mask = labels_attention_mask.unsqueeze(1)
337
-
338
- text_encoder_output = self.text_encoder(
339
- input_ids=input_ids,
340
- padding_mask=input_padding_mask,
341
- attention_mask=attention_mask,
342
- output_attentions=output_attentions,
343
- output_hidden_states=output_hidden_states,
344
- return_dict=return_dict,
345
- )
346
- hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
347
- hidden_states = hidden_states.transpose(1, 2)
348
- input_padding_mask = input_padding_mask.transpose(1, 2)
349
- prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
350
- prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
351
-
352
- latents, posterior_means, posterior_log_variances = self.posterior_encoder(
353
- labels, labels_padding_mask, speaker_embeddings
354
- )
355
- prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False)
356
-
357
- prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2)
358
- with torch.no_grad():
359
- # negative cross-entropy
360
-
361
- # [batch_size, d, latent_length]
362
- prior_variances = torch.exp(-2 * prior_log_variances)
363
- # [batch_size, 1, latent_length]
364
- neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True)
365
- # [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
366
- neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances)
367
- # [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
368
- neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances))
369
- # [batch_size, 1, latent_length]
370
- neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True)
371
-
372
- # [batch_size, text_length, latent_length]
373
- neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
374
-
375
- attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1)
376
-
377
- attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
378
-
379
- durations = attn.sum(2)
380
-
381
- if self.config.use_stochastic_duration_prediction:
382
- log_duration = self.duration_predictor(
383
- hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False
384
- )
385
- log_duration = log_duration / torch.sum(input_padding_mask)
386
- else:
387
- log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask
388
- log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
389
- log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask)
390
-
391
- # expand priors
392
- prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2)
393
- prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2)
394
-
395
- label_lengths = labels_attention_mask.sum(dim=1)
396
- latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size)
397
-
398
- waveform = self.decoder(latents_slice, speaker_embeddings)
399
-
400
- if not return_dict:
401
- outputs = (
402
- waveform,
403
- log_duration,
404
- attn,
405
- ids_slice,
406
- input_padding_mask,
407
- labels_padding_mask,
408
- latents,
409
- prior_latents,
410
- prior_means,
411
- prior_log_variances,
412
- posterior_means,
413
- posterior_log_variances,
414
- )
415
- return outputs
416
-
417
- return VitsTrainingOutput(
418
- waveform=waveform,
419
- log_duration=log_duration,
420
- attn=attn,
421
- ids_slice=ids_slice,
422
- input_padding_mask=input_padding_mask,
423
- labels_padding_mask=labels_padding_mask,
424
- latents=latents,
425
- prior_latents=prior_latents,
426
- prior_means=prior_means,
427
- prior_log_variances=prior_log_variances,
428
- posterior_means=posterior_means,
429
- posterior_log_variances=posterior_log_variances,
430
- )
431
-