Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -409,45 +409,45 @@ class TrinerModelVITS:
|
|
409 |
self.init_wandb()
|
410 |
# self.training_args=load_training_args(self.path_training_args)
|
411 |
# training_args= self.training_args
|
412 |
-
scaler = GradScaler(enabled=True)
|
413 |
-
for disc in self.model.discriminator.discriminators:
|
414 |
-
|
415 |
-
self.model.decoder.apply_weight_norm()
|
416 |
-
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
|
417 |
-
# torch.nn.utils.weight_norm(self.decoder.conv_post)
|
418 |
-
for flow in self.model.flow.flows:
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
discriminator = self.model.discriminator
|
423 |
-
self.model.discriminator = None
|
424 |
-
|
425 |
-
optimizer = torch.optim.AdamW(
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
)
|
431 |
-
|
432 |
-
# Hack to be able to train on multiple device
|
433 |
-
disc_optimizer = torch.optim.AdamW(
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
)
|
439 |
-
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
440 |
-
|
441 |
-
)
|
442 |
-
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
443 |
-
|
444 |
-
)
|
445 |
-
self.models=(self.model,discriminator)
|
446 |
-
self.optimizers=(optimizer,disc_optimizer,scaler)
|
447 |
-
self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
|
448 |
-
self.tools=load_tools()
|
449 |
-
self.stute_mode=True
|
450 |
-
print(self.lr_schedulers)
|
451 |
|
452 |
|
453 |
|
|
|
409 |
self.init_wandb()
|
410 |
# self.training_args=load_training_args(self.path_training_args)
|
411 |
# training_args= self.training_args
|
412 |
+
# scaler = GradScaler(enabled=True)
|
413 |
+
# for disc in self.model.discriminator.discriminators:
|
414 |
+
# disc.apply_weight_norm()
|
415 |
+
# self.model.decoder.apply_weight_norm()
|
416 |
+
# # torch.nn.utils.weight_norm(self.decoder.conv_pre)
|
417 |
+
# # torch.nn.utils.weight_norm(self.decoder.conv_post)
|
418 |
+
# for flow in self.model.flow.flows:
|
419 |
+
# torch.nn.utils.weight_norm(flow.conv_pre)
|
420 |
+
# torch.nn.utils.weight_norm(flow.conv_post)
|
421 |
+
|
422 |
+
# discriminator = self.model.discriminator
|
423 |
+
# self.model.discriminator = None
|
424 |
+
|
425 |
+
# optimizer = torch.optim.AdamW(
|
426 |
+
# self.model.parameters(),
|
427 |
+
# 2e-4,
|
428 |
+
# betas=[0.8, 0.99],
|
429 |
+
# # eps=training_args.adam_epsilon,
|
430 |
+
# )
|
431 |
+
|
432 |
+
# # Hack to be able to train on multiple device
|
433 |
+
# disc_optimizer = torch.optim.AdamW(
|
434 |
+
# discriminator.parameters(),
|
435 |
+
# 2e-4,
|
436 |
+
# betas=[0.8, 0.99],
|
437 |
+
# # eps=training_args.adam_epsilon,
|
438 |
+
# )
|
439 |
+
# lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
440 |
+
# optimizer,gamma=0.999875, last_epoch=-1
|
441 |
+
# )
|
442 |
+
# disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
443 |
+
# disc_optimizer, gamma=0.999875,last_epoch=-1
|
444 |
+
# )
|
445 |
+
# self.models=(self.model,discriminator)
|
446 |
+
# self.optimizers=(optimizer,disc_optimizer,scaler)
|
447 |
+
# self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
|
448 |
+
# self.tools=load_tools()
|
449 |
+
# self.stute_mode=True
|
450 |
+
# print(self.lr_schedulers)
|
451 |
|
452 |
|
453 |
|