wasmdashai commited on
Commit
d789727
·
verified ·
1 Parent(s): 8327790

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +148 -93
app.py CHANGED
@@ -1,102 +1,157 @@
1
- from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
2
- from PIL import Image
3
- import requests
4
- import torch
5
- from threading import Thread
6
  import gradio as gr
7
- from gradio import FileData
8
- import time
9
  import spaces
 
 
10
  import os
 
 
11
  token=os.environ.get("key_")
12
- ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
13
- model = MllamaForConditionalGeneration.from_pretrained(ckpt,token=token,
14
- torch_dtype=torch.bfloat16).to("cuda")
15
- processor = AutoProcessor.from_pretrained(ckpt,token=token)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
 
 
 
 
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  @spaces.GPU
19
- def bot_streaming(message, history, max_new_tokens=250):
20
-
21
- txt = message["text"]
22
- ext_buffer = f"{txt}"
23
-
24
- messages= []
25
- images = []
26
-
 
 
 
 
27
 
28
- for i, msg in enumerate(history):
29
- if isinstance(msg[0], tuple):
30
- messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
31
- messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
32
- images.append(Image.open(msg[0][0]).convert("RGB"))
33
- elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
34
- # messages are already handled
35
- pass
36
- elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
37
- messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
38
- messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
39
-
40
- # add current message
41
- if len(message["files"]) == 1:
42
-
43
- if isinstance(message["files"][0], str): # examples
44
- image = Image.open(message["files"][0]).convert("RGB")
45
- else: # regular input
46
- image = Image.open(message["files"][0]["path"]).convert("RGB")
47
- images.append(image)
48
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
49
- else:
50
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
51
-
52
-
53
- texts = processor.apply_chat_template(messages, add_generation_prompt=True)
54
-
55
- if images == []:
56
- inputs = processor(text=texts, return_tensors="pt").to("cuda")
57
- else:
58
- inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
59
- streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
60
-
61
- generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
62
- generated_text = ""
63
-
64
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
65
- thread.start()
66
- buffer = ""
67
-
68
- for new_text in streamer:
69
- buffer += new_text
70
- generated_text_without_prompt = buffer
71
- time.sleep(0.01)
72
- yield buffer
73
-
74
-
75
- demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[
76
- [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
77
- 200],
78
- [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
79
- 250],
80
- [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
81
- 250],
82
- [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
83
- 250],
84
- [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
85
- 250],
86
- ],
87
- textbox=gr.MultimodalTextbox(),
88
- additional_inputs = [gr.Slider(
89
- minimum=10,
90
- maximum=500,
91
- value=250,
92
- step=10,
93
- label="Maximum number of new tokens to generate",
94
- )
95
- ],
96
- cache_examples=False,
97
- description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
98
- stop_btn="Stop Generation",
99
- fill_height=True,
100
- multimodal=True)
101
 
102
- demo.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
2
  import spaces
3
+ import torch
4
+ from transformers import AutoTokenizer,VitsModel
5
  import os
6
+ import numpy as np
7
+
8
  token=os.environ.get("key_")
9
+ tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token)
10
+ models= {}
11
+
12
+ import noisereduce as nr
13
+
14
+ import torch
15
+ from typing import Any, Callable, Optional, Tuple, Union,Iterator
16
+
17
+ import torch.nn as nn # Import the missing module
18
+ def remove_noise_nr(audio_data,sr=16000):
19
+ reduced_noise = nr.reduce_noise(y=audio_data,hop_length=256, sr=sr)
20
+ return reduced_noise
21
+
22
+ def _inference_forward_stream(
23
+ self,
24
+ input_ids: Optional[torch.Tensor] = None,
25
+ attention_mask: Optional[torch.Tensor] = None,
26
+ speaker_embeddings: Optional[torch.Tensor] = None,
27
+ output_attentions: Optional[bool] = None,
28
+ output_hidden_states: Optional[bool] = None,
29
+ return_dict: Optional[bool] = None,
30
+ padding_mask: Optional[torch.Tensor] = None,
31
+ chunk_size: int = 32, # Chunk size for streaming output
32
+ is_streaming: bool = True,
33
+ ) -> Iterator[torch.Tensor]:
34
+ """Generates speech waveforms in a streaming fashion."""
35
+ if attention_mask is not None:
36
+ padding_mask = attention_mask.unsqueeze(-1).float()
37
+ else:
38
+ padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
39
+
40
+
41
+
42
+ text_encoder_output = self.text_encoder(
43
+ input_ids=input_ids,
44
+ padding_mask=padding_mask,
45
+ attention_mask=attention_mask,
46
+ output_attentions=output_attentions,
47
+ output_hidden_states=output_hidden_states,
48
+ return_dict=return_dict,
49
+ )
50
+ hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
51
+ hidden_states = hidden_states.transpose(1, 2)
52
+ input_padding_mask = padding_mask.transpose(1, 2)
53
+
54
+ prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
55
+ prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
56
+
57
+ if self.config.use_stochastic_duration_prediction:
58
+ log_duration = self.duration_predictor(
59
+ hidden_states,
60
+ input_padding_mask,
61
+ speaker_embeddings,
62
+ reverse=True,
63
+ noise_scale=self.noise_scale_duration,
64
+ )
65
+ else:
66
+ log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
67
+
68
+ length_scale = 1.0 / self.speaking_rate
69
+ duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
70
+ predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
71
+
72
 
73
+ # Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
74
+ indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
75
+ output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
76
+ output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
77
 
78
+ # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
79
+ attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
80
+ batch_size, _, output_length, input_length = attn_mask.shape
81
+ cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
82
+ indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
83
+ valid_indices = indices.unsqueeze(0) < cum_duration
84
+ valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
85
+ padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
86
+ attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
87
+
88
+ # Expand prior distribution
89
+ prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
90
+ prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
91
+
92
+ prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
93
+ latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
94
+
95
+ spectrogram = latents * output_padding_mask
96
+ if is_streaming:
97
+
98
+ for i in range(0, spectrogram.size(-1), chunk_size):
99
+ with torch.no_grad():
100
+ wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings)
101
+ yield wav.squeeze().cpu().numpy()
102
+ else:
103
+
104
+ wav=self.decoder(spectrogram,speaker_embeddings)
105
+ yield wav.squeeze().cpu().numpy()
106
  @spaces.GPU
107
+ def get_model(name_model):
108
+ global models
109
+ if name_model in models:
110
+ return models[name_model]
111
+ models[name_model]=VitsModel.from_pretrained(name_model,token=token).cuda()
112
+ models[name_model].decoder.apply_weight_norm()
113
+ # torch.nn.utils.weight_norm(self.decoder.conv_pre)
114
+ # torch.nn.utils.weight_norm(self.decoder.conv_post)
115
+ for flow in models[name_model].flow.flows:
116
+ torch.nn.utils.weight_norm(flow.conv_pre)
117
+ torch.nn.utils.weight_norm(flow.conv_post)
118
+ return models[name_model]
119
 
120
+
121
+ zero = torch.Tensor([0]).cuda()
122
+ print(zero.device) # <-- 'cpu' 🤔
123
+ import torch
124
+ TXT="""السلام عليكم ورحمة الله وبركاتة يا هلا وسهلا ومراحب بالغالي اخباركم طيبين ان شاء الله ارحبوا على العين والراس """
125
+ @spaces.GPU
126
+ def modelspeech(text=TXT,name_model="wasmdashai/vits-ar-sa-huba-v2",speaking_rate=16000):
127
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
+ inputs = tokenizer(text, return_tensors="pt")
130
+ model=get_model(name_model)
131
+ model.speaking_rate=speaking_rate
132
+ with torch.no_grad():
133
+ wav=list(_inference_forward_stream(model,input_ids=inputs.input_ids.cuda(),attention_mask=inputs.attention_mask.cuda(),speaker_embeddings= None,is_streaming=False))[0]
134
+ # with torch.no_grad():
135
+ # wav = model(input_ids=inputs["input_ids"].cuda()).waveform.cpu().numpy().reshape(-1)#.detach()
136
+
137
+ return (model.config.sampling_rate,wav)
138
+
139
+ model_choices = gr.Dropdown(
140
+ choices=[
141
+
142
+ "wasmdashai/vits-ar-sa-huba-v1",
143
+ "wasmdashai/vits-ar-sa-huba-v2",
144
+
145
+ "wasmdashai/vits-ar-sa-A",
146
+ "wasmdashai/vits-ar-ye-sa",
147
+ "wasmdashai/vits-ar-sa-M-v1"
148
+
149
+
150
+ ],
151
+ label="اختر النموذج",
152
+ value="wasmdashai/vits-ar-sa-huba-v2",
153
+ )
154
+
155
+ demo = gr.Interface(fn=modelspeech, inputs=["text",model_choices,gr.Slider(0.1, 1, step=0.1,value=0.8)], outputs=["audio"])
156
+ demo.queue()
157
+ demo.launch()