Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -276,8 +276,8 @@ def trainer_to_cuda(self,
|
|
276 |
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1)
|
277 |
|
278 |
|
279 |
-
logger.info("***** Running training *****")
|
280 |
-
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
|
281 |
|
282 |
|
283 |
#.......................loop training............................
|
@@ -526,11 +526,11 @@ def trainer_to_cuda(self,
|
|
526 |
|
527 |
self.save_pretrained(path_save_model)
|
528 |
|
529 |
-
logger.info("Running final full generations samples... ")
|
530 |
|
531 |
|
532 |
|
533 |
-
logger.info("***** Training / Inference Done *****")
|
534 |
def modelspeech(texts):
|
535 |
|
536 |
|
@@ -572,6 +572,10 @@ ctrain_datasets,eval_dataset,full_generation_dataset=get_data_loader(train_datas
|
|
572 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
573 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
574 |
device=device)
|
|
|
|
|
|
|
|
|
575 |
def greet(text,id):
|
576 |
global GK
|
577 |
b=int(id)
|
@@ -583,3 +587,50 @@ def greet(text,id):
|
|
583 |
|
584 |
demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text")
|
585 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1)
|
277 |
|
278 |
|
279 |
+
# logger.info("***** Running training *****")
|
280 |
+
# logger.info(f" Num Epochs = {training_args.num_train_epochs}")
|
281 |
|
282 |
|
283 |
#.......................loop training............................
|
|
|
526 |
|
527 |
self.save_pretrained(path_save_model)
|
528 |
|
529 |
+
# logger.info("Running final full generations samples... ")
|
530 |
|
531 |
|
532 |
|
533 |
+
# logger.info("***** Training / Inference Done *****")
|
534 |
def modelspeech(texts):
|
535 |
|
536 |
|
|
|
572 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
573 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
574 |
device=device)
|
575 |
+
|
576 |
+
|
577 |
+
|
578 |
+
|
579 |
def greet(text,id):
|
580 |
global GK
|
581 |
b=int(id)
|
|
|
587 |
|
588 |
demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text")
|
589 |
demo.launch()
|
590 |
+
|
591 |
+
|
592 |
+
raining_args.weight_kl=1
|
593 |
+
training_args.d_learning_rate=2e-4
|
594 |
+
training_args.learning_rate=2e-4
|
595 |
+
training_args.weight_mel=45
|
596 |
+
training_args.num_train_epochs=4
|
597 |
+
training_args.eval_steps=1000
|
598 |
+
global_step=0
|
599 |
+
dir_model='wasmdashai/vits-ar-huba-fine'
|
600 |
+
|
601 |
+
|
602 |
+
|
603 |
+
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
604 |
+
wandb.init(project= 'AZ',config = training_args.to_dict())
|
605 |
+
|
606 |
+
for i in range(10000):
|
607 |
+
# model.train(True)
|
608 |
+
print(f'clcye epochs ={i}')
|
609 |
+
model=VitsModel.from_pretrained(dir_model).to(device)
|
610 |
+
# model.setMfA(monotonic_align.maximum_path)
|
611 |
+
#dir_model_save=dir_model+'/vend'
|
612 |
+
|
613 |
+
|
614 |
+
trainer_to_cuda(model,
|
615 |
+
ctrain_datasets = ctrain_datasets,
|
616 |
+
eval_dataset = eval_dataset,
|
617 |
+
full_generation_dataset = ctrain_datasets[0][0],
|
618 |
+
feature_extractor = VitsFeatureExtractor(),
|
619 |
+
training_args = training_args,
|
620 |
+
full_generation_sample_index= -1,
|
621 |
+
project_name = "AZ",
|
622 |
+
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
|
623 |
+
is_used_text_encoder=True,
|
624 |
+
is_used_posterior_encode=True,
|
625 |
+
# dict_state_grad_loss=sgl,
|
626 |
+
nk=50,
|
627 |
+
path_save_model=dir_model,
|
628 |
+
maf=monotonic_align.maximum_path,
|
629 |
+
|
630 |
+
n_back_save_model=3000,
|
631 |
+
start_speeker=0,
|
632 |
+
end_speeker=1,
|
633 |
+
n_epoch=i*training_args.num_train_epochs,
|
634 |
+
|
635 |
+
|
636 |
+
)
|