wasmdashai commited on
Commit
f8c6c3e
·
verified ·
1 Parent(s): 2b8b814

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -75
app.py CHANGED
@@ -409,45 +409,45 @@ class TrinerModelVITS:
409
  self.init_wandb()
410
  # self.training_args=load_training_args(self.path_training_args)
411
  # training_args= self.training_args
412
- scaler = GradScaler(enabled=True)
413
- for disc in self.model.discriminator.discriminators:
414
- disc.apply_weight_norm()
415
- self.model.decoder.apply_weight_norm()
416
- # torch.nn.utils.weight_norm(self.decoder.conv_pre)
417
- # torch.nn.utils.weight_norm(self.decoder.conv_post)
418
- for flow in self.model.flow.flows:
419
- torch.nn.utils.weight_norm(flow.conv_pre)
420
- torch.nn.utils.weight_norm(flow.conv_post)
421
 
422
- discriminator = self.model.discriminator
423
- self.model.discriminator = None
424
 
425
- optimizer = torch.optim.AdamW(
426
- self.model.parameters(),
427
- 2e-4,
428
- betas=[0.8, 0.99],
429
- # eps=training_args.adam_epsilon,
430
- )
431
 
432
- # Hack to be able to train on multiple device
433
- disc_optimizer = torch.optim.AdamW(
434
- discriminator.parameters(),
435
- 2e-4,
436
- betas=[0.8, 0.99],
437
- # eps=training_args.adam_epsilon,
438
- )
439
- lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
440
- optimizer,gamma=0.999875, last_epoch=-1
441
- )
442
- disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
443
- disc_optimizer, gamma=0.999875,last_epoch=-1
444
- )
445
- self.models=(self.model,discriminator)
446
- self.optimizers=(optimizer,disc_optimizer,scaler)
447
- self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
448
- self.tools=load_tools()
449
- self.stute_mode=True
450
- print(self.lr_schedulers)
451
 
452
 
453
 
@@ -502,49 +502,49 @@ class TrinerModelVITS:
502
  training_args.num_train_epochs=4
503
  training_args.eval_steps=1000
504
 
505
- # set_seed(training_args.seed)
506
- # scaler = GradScaler(enabled=training_args.fp16)
507
 
508
 
509
- # # Initialize optimizer, lr_scheduler
510
- # for disc in self.model.discriminator.discriminators:
511
- # disc.apply_weight_norm()
512
- # self.model.decoder.apply_weight_norm()
513
- # # torch.nn.utils.weight_norm(self.decoder.conv_pre)
514
- # # torch.nn.utils.weight_norm(self.decoder.conv_post)
515
- # for flow in self.model.flow.flows:
516
- # torch.nn.utils.weight_norm(flow.conv_pre)
517
- # torch.nn.utils.weight_norm(flow.conv_post)
518
 
519
- # discriminator = self.model.discriminator
520
- # self.model.discriminator = None
521
 
522
- # optimizer = torch.optim.AdamW(
523
- # self.model.parameters(),
524
- # training_args.learning_rate,
525
- # betas=[training_args.adam_beta1, training_args.adam_beta2],
526
- # eps=training_args.adam_epsilon,
527
- # )
528
 
529
- # # Hack to be able to train on multiple device
530
- # disc_optimizer = torch.optim.AdamW(
531
- # discriminator.parameters(),
532
- # training_args.d_learning_rate,
533
- # betas=[training_args.d_adam_beta1, training_args.d_adam_beta2],
534
- # eps=training_args.adam_epsilon,
535
- # )
536
- # lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
537
- # optimizer, gamma=training_args.lr_decay, last_epoch=-1
538
- # )
539
- # disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
540
- # disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1
541
- # )
542
- # self.models=(self.model,discriminator)
543
- # self.optimizers=(optimizer,disc_optimizer,scaler)
544
- # self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
545
- # self.tools=load_tools()
546
- # self.stute_mode=True
547
- # print(self.lr_schedulers)
548
 
549
 
550
 
@@ -610,7 +610,7 @@ train_dataset_dirs=[
610
  # ('/content/drive/MyDrive/vitsM/DATA/wafa-db',4),
611
  # ('/content/drive/MyDrive/vitsM/DATA/DB-ABThag-Bitch:5-Count-37',4),
612
  # ('/content/drive/MyDrive/vitsM/DB-300-k',6),
613
- ('ABThag-db',0),
614
  #('/content/drive/MyDrive/dataset_ljBatchs',0),
615
 
616
 
 
409
  self.init_wandb()
410
  # self.training_args=load_training_args(self.path_training_args)
411
  # training_args= self.training_args
412
+ # scaler = GradScaler(enabled=True)
413
+ # for disc in self.model.discriminator.discriminators:
414
+ # disc.apply_weight_norm()
415
+ # self.model.decoder.apply_weight_norm()
416
+ # # torch.nn.utils.weight_norm(self.decoder.conv_pre)
417
+ # # torch.nn.utils.weight_norm(self.decoder.conv_post)
418
+ # for flow in self.model.flow.flows:
419
+ # torch.nn.utils.weight_norm(flow.conv_pre)
420
+ # torch.nn.utils.weight_norm(flow.conv_post)
421
 
422
+ # discriminator = self.model.discriminator
423
+ # self.model.discriminator = None
424
 
425
+ # optimizer = torch.optim.AdamW(
426
+ # self.model.parameters(),
427
+ # 2e-4,
428
+ # betas=[0.8, 0.99],
429
+ # # eps=training_args.adam_epsilon,
430
+ # )
431
 
432
+ # # Hack to be able to train on multiple device
433
+ # disc_optimizer = torch.optim.AdamW(
434
+ # discriminator.parameters(),
435
+ # 2e-4,
436
+ # betas=[0.8, 0.99],
437
+ # # eps=training_args.adam_epsilon,
438
+ # )
439
+ # lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
440
+ # optimizer,gamma=0.999875, last_epoch=-1
441
+ # )
442
+ # disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
443
+ # disc_optimizer, gamma=0.999875,last_epoch=-1
444
+ # )
445
+ # self.models=(self.model,discriminator)
446
+ # self.optimizers=(optimizer,disc_optimizer,scaler)
447
+ # self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
448
+ # self.tools=load_tools()
449
+ # self.stute_mode=True
450
+ # print(self.lr_schedulers)
451
 
452
 
453
 
 
502
  training_args.num_train_epochs=4
503
  training_args.eval_steps=1000
504
 
505
+ set_seed(training_args.seed)
506
+ scaler = GradScaler(enabled=training_args.fp16)
507
 
508
 
509
+ # Initialize optimizer, lr_scheduler
510
+ for disc in self.model.discriminator.discriminators:
511
+ disc.apply_weight_norm()
512
+ self.model.decoder.apply_weight_norm()
513
+ # torch.nn.utils.weight_norm(self.decoder.conv_pre)
514
+ # torch.nn.utils.weight_norm(self.decoder.conv_post)
515
+ for flow in self.model.flow.flows:
516
+ torch.nn.utils.weight_norm(flow.conv_pre)
517
+ torch.nn.utils.weight_norm(flow.conv_post)
518
 
519
+ discriminator = self.model.discriminator
520
+ self.model.discriminator = None
521
 
522
+ optimizer = torch.optim.AdamW(
523
+ self.model.parameters(),
524
+ training_args.learning_rate,
525
+ betas=[training_args.adam_beta1, training_args.adam_beta2],
526
+ eps=training_args.adam_epsilon,
527
+ )
528
 
529
+ # Hack to be able to train on multiple device
530
+ disc_optimizer = torch.optim.AdamW(
531
+ discriminator.parameters(),
532
+ training_args.d_learning_rate,
533
+ betas=[training_args.d_adam_beta1, training_args.d_adam_beta2],
534
+ eps=training_args.adam_epsilon,
535
+ )
536
+ lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
537
+ optimizer, gamma=training_args.lr_decay, last_epoch=-1
538
+ )
539
+ disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
540
+ disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1
541
+ )
542
+ self.models=(self.model,discriminator)
543
+ self.optimizers=(optimizer,disc_optimizer,scaler)
544
+ self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
545
+ self.tools=load_tools()
546
+ self.stute_mode=True
547
+ print(self.lr_schedulers)
548
 
549
 
550
 
 
610
  # ('/content/drive/MyDrive/vitsM/DATA/wafa-db',4),
611
  # ('/content/drive/MyDrive/vitsM/DATA/DB-ABThag-Bitch:5-Count-37',4),
612
  # ('/content/drive/MyDrive/vitsM/DB-300-k',6),
613
+ ('databatchs',0),
614
  #('/content/drive/MyDrive/dataset_ljBatchs',0),
615
 
616