import gradio as gr GK=0 from transformers import AutoTokenizer,VitsModel import torch import os token=os.environ.get("key_") tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token) #device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device) def modelspeech(texts): inputs = tokenizer(texts, return_tensors="pt")#.cuda() wav = model_vits(input_ids=inputs["input_ids"]).waveform#.detach() # display(Audio(wav, rate=model.config.sampling_rate)) return model_vits.config.sampling_rate,wav#remove_noise_nr(wav) def greet(text,id): global GK b=int(id) while True: GK+=1 texts=[text]*b out=modelspeech(texts) yield f"namber is {GK}" demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text") demo.launch()