Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -65,11 +65,11 @@ class model_onxx:
|
|
65 |
return self.model
|
66 |
def convert_model_decoder_onxx(self,n_model,token,namemodelonxx):
|
67 |
self.model= VitsModel.from_pretrained(n_model,token=token)
|
68 |
-
x=f"{namemodelonxx}.onnx"
|
69 |
return x
|
70 |
def convert_to_onnx_only_decoder(self,n_model,token,namemodelonxx):
|
71 |
model=VitsModel.from_pretrained(n_model,token=token)
|
72 |
-
x=f"{namemodelonxx}.onnx"
|
73 |
|
74 |
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
75 |
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
@@ -90,7 +90,7 @@ class model_onxx:
|
|
90 |
def convert_to_onnx_all(self,n_model,token ,namemodelonxx):
|
91 |
|
92 |
model=VitsModel.from_pretrained(n_model,token=token)
|
93 |
-
x=f"{namemodelonxx}.onnx"
|
94 |
|
95 |
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
96 |
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
|
|
65 |
return self.model
|
66 |
def convert_model_decoder_onxx(self,n_model,token,namemodelonxx):
|
67 |
self.model= VitsModel.from_pretrained(n_model,token=token)
|
68 |
+
x=f"dowload_file/{namemodelonxx}.onnx"
|
69 |
return x
|
70 |
def convert_to_onnx_only_decoder(self,n_model,token,namemodelonxx):
|
71 |
model=VitsModel.from_pretrained(n_model,token=token)
|
72 |
+
x=f"dowload_file/{namemodelonxx}.onnx"
|
73 |
|
74 |
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
75 |
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
|
|
90 |
def convert_to_onnx_all(self,n_model,token ,namemodelonxx):
|
91 |
|
92 |
model=VitsModel.from_pretrained(n_model,token=token)
|
93 |
+
x=f"dowload_file/{namemodelonxx}.onnx"
|
94 |
|
95 |
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
96 |
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|