File size: 7,268 Bytes
4451360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# %%
import argparse
import os
import torch
from torch.utils.data import DataLoader
from models.tacotron2.tacotron2_ms import Tacotron2MS

from utils import get_config
from utils.data import ArabDataset, text_mel_collate_fn
from utils.logging import TBLogger
from utils.training import batch_to_device, save_states_gan as save_states

from models.common.loss import PatchDiscriminator, extract_chunks, calc_feature_match_loss
from models.tacotron2.loss import Tacotron2Loss

# %%

try:
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str,
                        default="configs/nawar_tc2_adv.yaml", help="Path to yaml config file")
    args = parser.parse_args()
    config_path = args.config
except:
    config_path = './configs/nawar_tc2_adv.yaml'

# %%

config = get_config(config_path)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# set random seed
if config.random_seed != False:
    torch.manual_seed(config.random_seed)
    torch.cuda.manual_seed_all(config.random_seed)
    import numpy as np
    np.random.seed(config.random_seed)

# make checkpoint folder if nonexistent
if not os.path.isdir(config.checkpoint_dir):
    os.makedirs(os.path.abspath(config.checkpoint_dir))
    print(f"Created checkpoint_dir folder: {config.checkpoint_dir}")

# datasets
train_dataset = ArabDataset(txtpath=config.train_labels, 
                            wavpath=config.train_wavs_path,
                            label_pattern=config.label_pattern)
# test_dataset = ArabDataset(config.test_labels, config.test_wavs_path)

# optional: balanced sampling
sampler, shuffle, drop_last = None, True, True
if config.balanced_sampling:
    weights = torch.load(config.sampler_weights_file)

    sampler = torch.utils.data.WeightedRandomSampler(
        weights, len(weights), replacement=False)
    shuffle, drop_last = False, False

# dataloaders
train_loader = DataLoader(train_dataset,
                          batch_size=config.batch_size,
                          collate_fn=text_mel_collate_fn,
                          shuffle=shuffle, drop_last=drop_last,
                          sampler=sampler)

# test_loader = DataLoader(test_dataset,
#                          batch_size=config.batch_size, drop_last=False,
#                          shuffle=False, collate_fn=text_mel_collate_fn)

# %% Generator
model = Tacotron2MS(n_symbol=40, num_speakers=40)
model = model.to(device)
model.decoder.decoder_max_step = config.decoder_max_step

optimizer = torch.optim.AdamW(model.parameters(), 
                              lr=config.g_lr, 
                              betas=(config.g_beta1, config.g_beta2), 
                              weight_decay=config.weight_decay)
criterion = Tacotron2Loss(mel_loss_scale=1.0)

# %% Discriminator
critic = PatchDiscriminator(1, 32).to(device)

optimizer_d = torch.optim.AdamW(critic.parameters(),
                                lr=config.d_lr, 
                                betas=(config.d_beta1, config.d_beta2), 
                                weight_decay=config.weight_decay)
tar_len = 128

# %%
# resume from existing checkpoint
n_epoch, n_iter = 0, 0

if config.restore_model != '':
    state_dicts = torch.load(config.restore_model)
    model.load_state_dict(state_dicts['model'])
    if 'model_d' in state_dicts:
        critic.load_state_dict(state_dicts['model_d'], strict=False)
    if 'optim' in state_dicts:
        optimizer.load_state_dict(state_dicts['optim'])
    if 'optim_d' in state_dicts:
        optimizer_d.load_state_dict(state_dicts['optim_d'])
    if 'epoch' in state_dicts:
        n_epoch = state_dicts['epoch']
    if 'iter' in state_dicts:
        n_iter = state_dicts['iter']

# %%
# tensorboard writer
writer = TBLogger(config.log_dir)

# %%

def trunc_batch(batch, N):
    return (batch[0][:N], batch[1][:N], batch[2][:N],
            batch[3][:N], batch[4][:N])

# %% TRAINING LOOP

model.train()

for epoch in range(n_epoch, config.epochs):
    print(f"Epoch: {epoch}")
    for batch in train_loader:

        if batch[-1][0] > 2000:
            batch = trunc_batch(batch, 6)

        text_padded, input_lengths, mel_padded, gate_padded, \
            output_lengths = batch_to_device(batch, device)

        y_pred = model(text_padded, input_lengths,
                       mel_padded, output_lengths,
                       torch.zeros_like(output_lengths))
        mel_out, mel_out_postnet, gate_out, alignments = y_pred

        # extract chunks for critic
        Nchunks = mel_out.size(0)
        tar_len_ = min(output_lengths.min().item(), tar_len)
        mel_ids = torch.randint(0, mel_out.size(0), (Nchunks,)).cuda(non_blocking=True)
        ofx_perc = torch.rand(Nchunks).cuda(non_blocking=True)
        out_lens = output_lengths[mel_ids]        
    
        ofx = (ofx_perc * (out_lens + tar_len_) - tar_len_/2) \
            .clamp(out_lens*0, out_lens - tar_len_).long()

        chunks_org = extract_chunks(
            mel_padded, ofx, mel_ids, tar_len_)  # mel_padded: B F T
        chunks_gen = extract_chunks(
            mel_out_postnet, ofx, mel_ids, tar_len_)  # mel_out_postnet: B F T

        chunks_org_ = (chunks_org.unsqueeze(1) + 4.5) / 2.5
        chunks_gen_ = (chunks_gen.unsqueeze(1) + 4.5) / 2.5

        # DISCRIMINATOR
        d_org, fmaps_org = critic(chunks_org_.requires_grad_(True))
        d_gen, _ = critic(chunks_gen_.detach())

        loss_d = 0.5*(d_org - 1).square().mean() + 0.5*d_gen.square().mean()

        critic.zero_grad()
        loss_d.backward()
        optimizer_d.step()

        # GENERATOR
        loss, meta = criterion(mel_out, mel_out_postnet, mel_padded,
                               gate_out, gate_padded)

        d_gen2, fmaps_gen = critic(chunks_gen_)
        loss_score = (d_gen2 - 1).square().mean()
        loss_fmatch = calc_feature_match_loss(fmaps_gen, fmaps_org)

        loss += config.gan_loss_weight * loss_score
        loss += config.feat_loss_weight * loss_fmatch        

        optimizer.zero_grad()
        loss.backward()
        grad_norm = torch.nn.utils.clip_grad_norm_(
            model.parameters(), config.grad_clip_thresh)
        optimizer.step()

        # LOGGING
        meta['score'] = loss_score.clone().detach()
        meta['fmatch'] = loss_fmatch.clone().detach()
        meta['loss'] = loss.clone().detach()

        print(f"loss: {loss.item()}, grad_norm: {grad_norm.item()}")

        writer.add_training_data(meta, grad_norm.item(),
                                 config.learning_rate, n_iter)


        if n_iter % config.n_save_states_iter == 0:
            save_states(f'states.pth', model, critic,
                        optimizer, optimizer_d, n_iter, 
                        epoch, None, config)

        if n_iter % config.n_save_backup_iter == 0 and n_iter > 0:
            save_states(f'states_{n_iter}.pth', model, critic,
                        optimizer, optimizer_d, n_iter, 
                        epoch, None, config)

        n_iter += 1

    # VALIDATE
    # val_loss = validate(model, test_loader, writer, device, n_iter)
    # print(f"Validation loss: {val_loss}")


save_states(f'states.pth', model, critic,
            optimizer, optimizer_d, n_iter, 
            epoch, None, config)


# %%