File size: 9,725 Bytes
4451360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import re

import text
import torch
import torchaudio
import numpy as np
from torch.utils.data import Dataset

from utils import read_lines_from_file, progbar
from utils.audio import MelSpectrogram

def text_mel_collate_fn(batch, pad_value=0):
    """
    Args:
        batch: List[(text_ids, mel_spec)]
    Returns:
        text_ids_pad
        input_lengths
        mel_pad
        gate_pad
        output_lengths
    """
    input_lens_sorted, input_sort_ids = torch.sort(
        torch.LongTensor([len(x[0]) for x in batch]),
        dim=0, descending=True)
    max_input_len = input_lens_sorted[0]

    num_mels = batch[0][1].size(0)
    max_target_len = max([x[1].size(1) for x in batch])

    text_ids_pad = torch.LongTensor(len(batch), max_input_len)
    mel_pad = torch.FloatTensor(len(batch), num_mels, max_target_len)
    gate_pad = torch.FloatTensor(len(batch), max_target_len)
    output_lengths = torch.LongTensor(len(batch))

    text_ids_pad.zero_(), mel_pad.fill_(pad_value), gate_pad.zero_()

    for i in range(len(input_sort_ids)):
        text_ids, mel = batch[input_sort_ids[i]]
        text_ids_pad[i, :text_ids.size(0)] = text_ids
        mel_pad[i, :, :mel.size(1)] = mel
        gate_pad[i, mel.size(1)-1:] = 1
        output_lengths[i] = mel.size(1)

    return text_ids_pad, input_lens_sorted, \
        mel_pad, gate_pad, output_lengths


def normalize_pitch(pitch, 
                    mean: float = 130.05478, 
                    std: float = 22.86267):
    zeros = (pitch == 0.0)
    pitch -= mean
    pitch /= std
    pitch[zeros] = 0.0
    return pitch

def remove_silence(energy_per_frame: torch.Tensor, 
                   thresh: float = -10.0):
    keep = energy_per_frame > thresh
    # keep silence at the end
    i = keep.size(0)-1
    while not keep[i] and i > 0:
        keep[i] = True
        i -= 1
    return keep

def make_dataset_from_subdirs(folder_path):
    samples = []
    for root, _, fnames in os.walk(folder_path, followlinks=True):
        for fname in fnames:
            if fname.endswith('.wav'):
                samples.append(os.path.join(root, fname))

    return samples

def _process_line(label_pattern: str, line: str):        
    match = re.search(label_pattern, line)
    if match is None:
        raise Exception(f'no match for line: {line}')

    res_dict = match.groupdict()

    if 'arabic' in res_dict:
        phonemes = text.arabic_to_phonemes(res_dict['arabic'])
    elif 'phonemes' in res_dict:
        phonemes = res_dict['phonemes']
    elif 'buckwalter' in res_dict:
        phonemes = text.buckwalter_to_phonemes(res_dict['buckwalter'])
    
    if 'filename' in res_dict:
        filename = res_dict['filename']
    elif 'filestem' in res_dict:
        filename = f"{res_dict['filestem']}.wav"        

    return phonemes, filename


class ArabDataset(Dataset):
    def __init__(self,
                 txtpath: str = 'tts data sample/text.txt',
                 wavpath: str = './',
                 label_pattern: str = '"(?P<filename>.*)" "(?P<phonemes>.*)"',
                 sr_target: int = 22050
                 ):
        super().__init__()

        self.mel_fn = MelSpectrogram()
        self.wav_path = wavpath
        self.label_pattern = label_pattern
        self.sr_target = sr_target

        self.data = self._process_textfile(txtpath)
    
    def _process_textfile(self, txtpath: str):
        
        lines = read_lines_from_file(txtpath)

        phoneme_mel_list = []

        for l_idx, line in enumerate(progbar(lines)):
            try:
                phonemes, filename = _process_line(
                    self.label_pattern, line)
            except:
                print(f'invalid line {l_idx}: {line}')
                continue

            fpath = os.path.join(self.wav_path, filename)
            if not os.path.exists(fpath):
                print(f"{fpath} does not exist")
                continue

            try:
                tokens = text.phonemes_to_tokens(phonemes)
                token_ids = text.tokens_to_ids(tokens)
            except:
                print(f'invalid phonemes at line {l_idx}: {line}')
                continue
           
            phoneme_mel_list.append((torch.LongTensor(token_ids), fpath))

        return phoneme_mel_list

    def _get_mel_from_fpath(self, fpath):
        wave, sr = torchaudio.load(fpath)
        if sr != self.sr_target:
            wave = torchaudio.functional.resample(wave, sr, self.sr_target, 64)

        mel_raw = self.mel_fn(wave)
        mel_log = mel_raw.clamp_min(1e-5).log().squeeze()

        energy_per_frame = mel_log.mean(0)
        mel_log = mel_log[:, remove_silence(energy_per_frame)]

        return mel_log

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):

        phonemes, fpath = self.data[idx]
        mel_log = self._get_mel_from_fpath(fpath)

        return phonemes, mel_log
    

class ArabDataset4FastPitch(Dataset):
    def __init__(self, 
                 txtpath: str = './data/train_phon.txt',
                 wavpath: str = 'G:/data/arabic-speech-corpus/wav_new',                
                 label_pattern: str = '"(?P<filename>.*)" "(?P<phonemes>.*)"',
                 f0_dict_path: str = './data/pitch_dict.pt',
                 f0_mean: float = 130.05478, 
                 f0_std: float = 22.86267,
                 sr_target: int = 22050
                 ):
        super().__init__()
        from models.fastpitch.fastpitch.data_function import BetaBinomialInterpolator

        self.mel_fn = MelSpectrogram()
        self.wav_path = wavpath
        self.label_pattern = label_pattern
        self.sr_target = sr_target

        self.f0_dict = torch.load(f0_dict_path)
        self.f0_mean = f0_mean
        self.f0_std = f0_std
        self.betabinomial_interpolator = BetaBinomialInterpolator()

        self.data = self._process_textfile(txtpath)


    def _process_textfile(self, txtpath: str):
        lines = read_lines_from_file(txtpath)

        phoneme_mel_pitch_list = []

        for l_idx, line in enumerate(progbar(lines)):

            try:
                phonemes, filename = _process_line(
                    self.label_pattern, line)
            except:
                print(f'invalid line {l_idx}: {line}')
                continue

            fpath = os.path.join(self.wav_path, filename)            
            if not os.path.exists(fpath):
                print(f"{fpath} does not exist")
                continue

            try:
                tokens = text.phonemes_to_tokens(phonemes)
                token_ids = text.tokens_to_ids(tokens)
            except:
                print(f'invalid phonemes at line {l_idx}: {line}')
                continue
                    
            wav_name = os.path.basename(fpath)
            pitch_mel = self.f0_dict[wav_name][None]
         
            phoneme_mel_pitch_list.append(
                (torch.LongTensor(token_ids), fpath, pitch_mel))
        
        return phoneme_mel_pitch_list

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):

        phonemes, fpath, pitch_mel = self.data[idx]

        wave, sr = torchaudio.load(fpath)
        if sr != self.sr_target:
            wave = torchaudio.functional.resample(wave, sr, self.sr_target, 64)

        mel_raw = self.mel_fn(wave)
        mel_log = mel_raw.clamp_min(1e-5).log().squeeze()

        keep = remove_silence(mel_log.mean(0))
        mel_log = mel_log[:, keep]
        pitch_mel = normalize_pitch(pitch_mel[:,keep], self.f0_mean, self.f0_std)

        energy = torch.norm(mel_log.float(), dim=0, p=2)
        attn_prior = torch.from_numpy(
            self.betabinomial_interpolator(mel_log.size(1), len(phonemes)))

        speaker = None
        return (phonemes, mel_log, len(phonemes), pitch_mel, 
                energy, speaker, attn_prior,
                fpath)


class DynBatchDataset(ArabDataset4FastPitch):
    def __init__(self, 
                 txtpath: str = './data/train_phon.txt',
                 wavpath: str = 'G:/data/arabic-speech-corpus/wav_new',
                 label_pattern: str = '"(?P<filename>.*)" "(?P<phonemes>.*)"',
                 f0_dict_path: str = './data/pitch_dict.pt',
                 f0_mean: float = 130.05478, 
                 f0_std: float = 22.86267,
                 max_lengths: list[int] = [1000, 1300, 1850, 30000],
                 batch_sizes: list[int] = [10, 8, 6, 4],
                 ):
        
        super().__init__(txtpath=txtpath, wavpath=wavpath,
                         label_pattern=label_pattern,
                         f0_dict_path=f0_dict_path,
                         f0_mean=f0_mean, f0_std=f0_std)

        self.max_lens = [0,] + max_lengths
        self.b_sizes = batch_sizes

        self.id_batches = []
        self.shuffle()

    def shuffle(self):
      
        lens = [x[2].size(1) for x in self.data] # x[2]: pitch

        ids_per_bs = {b: [] for b in self.b_sizes}

        for i, mel_len in enumerate(lens):
            b_idx = next(i for i in range(len(self.max_lens)-1)
                         if self.max_lens[i] <= mel_len < self.max_lens[i+1])
            ids_per_bs[self.b_sizes[b_idx]].append(i)

        id_batches = []

        for bs, ids in ids_per_bs.items():
            np.random.shuffle(ids)
            ids_chnk = [ids[i:i+bs] for i in range(0, len(ids), bs)]
            id_batches += ids_chnk

        self.id_batches = id_batches

    def __len__(self):
        return len(self.id_batches)

    def __getitem__(self, idx):
        batch = [super(DynBatchDataset, self).__getitem__(idx)
                 for idx in self.id_batches[idx]]
        return batch