Spaces:
Sleeping
Sleeping
File size: 9,725 Bytes
4451360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import re
import text
import torch
import torchaudio
import numpy as np
from torch.utils.data import Dataset
from utils import read_lines_from_file, progbar
from utils.audio import MelSpectrogram
def text_mel_collate_fn(batch, pad_value=0):
"""
Args:
batch: List[(text_ids, mel_spec)]
Returns:
text_ids_pad
input_lengths
mel_pad
gate_pad
output_lengths
"""
input_lens_sorted, input_sort_ids = torch.sort(
torch.LongTensor([len(x[0]) for x in batch]),
dim=0, descending=True)
max_input_len = input_lens_sorted[0]
num_mels = batch[0][1].size(0)
max_target_len = max([x[1].size(1) for x in batch])
text_ids_pad = torch.LongTensor(len(batch), max_input_len)
mel_pad = torch.FloatTensor(len(batch), num_mels, max_target_len)
gate_pad = torch.FloatTensor(len(batch), max_target_len)
output_lengths = torch.LongTensor(len(batch))
text_ids_pad.zero_(), mel_pad.fill_(pad_value), gate_pad.zero_()
for i in range(len(input_sort_ids)):
text_ids, mel = batch[input_sort_ids[i]]
text_ids_pad[i, :text_ids.size(0)] = text_ids
mel_pad[i, :, :mel.size(1)] = mel
gate_pad[i, mel.size(1)-1:] = 1
output_lengths[i] = mel.size(1)
return text_ids_pad, input_lens_sorted, \
mel_pad, gate_pad, output_lengths
def normalize_pitch(pitch,
mean: float = 130.05478,
std: float = 22.86267):
zeros = (pitch == 0.0)
pitch -= mean
pitch /= std
pitch[zeros] = 0.0
return pitch
def remove_silence(energy_per_frame: torch.Tensor,
thresh: float = -10.0):
keep = energy_per_frame > thresh
# keep silence at the end
i = keep.size(0)-1
while not keep[i] and i > 0:
keep[i] = True
i -= 1
return keep
def make_dataset_from_subdirs(folder_path):
samples = []
for root, _, fnames in os.walk(folder_path, followlinks=True):
for fname in fnames:
if fname.endswith('.wav'):
samples.append(os.path.join(root, fname))
return samples
def _process_line(label_pattern: str, line: str):
match = re.search(label_pattern, line)
if match is None:
raise Exception(f'no match for line: {line}')
res_dict = match.groupdict()
if 'arabic' in res_dict:
phonemes = text.arabic_to_phonemes(res_dict['arabic'])
elif 'phonemes' in res_dict:
phonemes = res_dict['phonemes']
elif 'buckwalter' in res_dict:
phonemes = text.buckwalter_to_phonemes(res_dict['buckwalter'])
if 'filename' in res_dict:
filename = res_dict['filename']
elif 'filestem' in res_dict:
filename = f"{res_dict['filestem']}.wav"
return phonemes, filename
class ArabDataset(Dataset):
def __init__(self,
txtpath: str = 'tts data sample/text.txt',
wavpath: str = './',
label_pattern: str = '"(?P<filename>.*)" "(?P<phonemes>.*)"',
sr_target: int = 22050
):
super().__init__()
self.mel_fn = MelSpectrogram()
self.wav_path = wavpath
self.label_pattern = label_pattern
self.sr_target = sr_target
self.data = self._process_textfile(txtpath)
def _process_textfile(self, txtpath: str):
lines = read_lines_from_file(txtpath)
phoneme_mel_list = []
for l_idx, line in enumerate(progbar(lines)):
try:
phonemes, filename = _process_line(
self.label_pattern, line)
except:
print(f'invalid line {l_idx}: {line}')
continue
fpath = os.path.join(self.wav_path, filename)
if not os.path.exists(fpath):
print(f"{fpath} does not exist")
continue
try:
tokens = text.phonemes_to_tokens(phonemes)
token_ids = text.tokens_to_ids(tokens)
except:
print(f'invalid phonemes at line {l_idx}: {line}')
continue
phoneme_mel_list.append((torch.LongTensor(token_ids), fpath))
return phoneme_mel_list
def _get_mel_from_fpath(self, fpath):
wave, sr = torchaudio.load(fpath)
if sr != self.sr_target:
wave = torchaudio.functional.resample(wave, sr, self.sr_target, 64)
mel_raw = self.mel_fn(wave)
mel_log = mel_raw.clamp_min(1e-5).log().squeeze()
energy_per_frame = mel_log.mean(0)
mel_log = mel_log[:, remove_silence(energy_per_frame)]
return mel_log
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
phonemes, fpath = self.data[idx]
mel_log = self._get_mel_from_fpath(fpath)
return phonemes, mel_log
class ArabDataset4FastPitch(Dataset):
def __init__(self,
txtpath: str = './data/train_phon.txt',
wavpath: str = 'G:/data/arabic-speech-corpus/wav_new',
label_pattern: str = '"(?P<filename>.*)" "(?P<phonemes>.*)"',
f0_dict_path: str = './data/pitch_dict.pt',
f0_mean: float = 130.05478,
f0_std: float = 22.86267,
sr_target: int = 22050
):
super().__init__()
from models.fastpitch.fastpitch.data_function import BetaBinomialInterpolator
self.mel_fn = MelSpectrogram()
self.wav_path = wavpath
self.label_pattern = label_pattern
self.sr_target = sr_target
self.f0_dict = torch.load(f0_dict_path)
self.f0_mean = f0_mean
self.f0_std = f0_std
self.betabinomial_interpolator = BetaBinomialInterpolator()
self.data = self._process_textfile(txtpath)
def _process_textfile(self, txtpath: str):
lines = read_lines_from_file(txtpath)
phoneme_mel_pitch_list = []
for l_idx, line in enumerate(progbar(lines)):
try:
phonemes, filename = _process_line(
self.label_pattern, line)
except:
print(f'invalid line {l_idx}: {line}')
continue
fpath = os.path.join(self.wav_path, filename)
if not os.path.exists(fpath):
print(f"{fpath} does not exist")
continue
try:
tokens = text.phonemes_to_tokens(phonemes)
token_ids = text.tokens_to_ids(tokens)
except:
print(f'invalid phonemes at line {l_idx}: {line}')
continue
wav_name = os.path.basename(fpath)
pitch_mel = self.f0_dict[wav_name][None]
phoneme_mel_pitch_list.append(
(torch.LongTensor(token_ids), fpath, pitch_mel))
return phoneme_mel_pitch_list
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
phonemes, fpath, pitch_mel = self.data[idx]
wave, sr = torchaudio.load(fpath)
if sr != self.sr_target:
wave = torchaudio.functional.resample(wave, sr, self.sr_target, 64)
mel_raw = self.mel_fn(wave)
mel_log = mel_raw.clamp_min(1e-5).log().squeeze()
keep = remove_silence(mel_log.mean(0))
mel_log = mel_log[:, keep]
pitch_mel = normalize_pitch(pitch_mel[:,keep], self.f0_mean, self.f0_std)
energy = torch.norm(mel_log.float(), dim=0, p=2)
attn_prior = torch.from_numpy(
self.betabinomial_interpolator(mel_log.size(1), len(phonemes)))
speaker = None
return (phonemes, mel_log, len(phonemes), pitch_mel,
energy, speaker, attn_prior,
fpath)
class DynBatchDataset(ArabDataset4FastPitch):
def __init__(self,
txtpath: str = './data/train_phon.txt',
wavpath: str = 'G:/data/arabic-speech-corpus/wav_new',
label_pattern: str = '"(?P<filename>.*)" "(?P<phonemes>.*)"',
f0_dict_path: str = './data/pitch_dict.pt',
f0_mean: float = 130.05478,
f0_std: float = 22.86267,
max_lengths: list[int] = [1000, 1300, 1850, 30000],
batch_sizes: list[int] = [10, 8, 6, 4],
):
super().__init__(txtpath=txtpath, wavpath=wavpath,
label_pattern=label_pattern,
f0_dict_path=f0_dict_path,
f0_mean=f0_mean, f0_std=f0_std)
self.max_lens = [0,] + max_lengths
self.b_sizes = batch_sizes
self.id_batches = []
self.shuffle()
def shuffle(self):
lens = [x[2].size(1) for x in self.data] # x[2]: pitch
ids_per_bs = {b: [] for b in self.b_sizes}
for i, mel_len in enumerate(lens):
b_idx = next(i for i in range(len(self.max_lens)-1)
if self.max_lens[i] <= mel_len < self.max_lens[i+1])
ids_per_bs[self.b_sizes[b_idx]].append(i)
id_batches = []
for bs, ids in ids_per_bs.items():
np.random.shuffle(ids)
ids_chnk = [ids[i:i+bs] for i in range(0, len(ids), bs)]
id_batches += ids_chnk
self.id_batches = id_batches
def __len__(self):
return len(self.id_batches)
def __getitem__(self, idx):
batch = [super(DynBatchDataset, self).__getitem__(idx)
for idx in self.id_batches[idx]]
return batch |