Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from transformers import AutoTokenizer,VitsModel | |
import google.generativeai as genai | |
import torch | |
import torchaudio | |
api_key =os.environ.get("id_gmkey") | |
token=os.environ.get("key_") | |
genai.configure(api_key=api_key) | |
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token) | |
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device) | |
model_vits.decoder.apply_weight_norm() | |
# torch.nn.utils.weight_norm(self.decoder.conv_pre) | |
# torch.nn.utils.weight_norm(self.decoder.conv_post) | |
for flow in model_vits.flow.flows: | |
torch.nn.utils.weight_norm(flow.conv_pre) | |
torch.nn.utils.weight_norm(flow.conv_post) | |
generation_config = { | |
"temperature": 1, | |
"top_p": 0.95, | |
"top_k": 64, | |
"max_output_tokens": 8192, | |
"response_mime_type": "text/plain", | |
} | |
import requests | |
API_URL = "https://api-inference.huggingface.co/models/wasmdashai/vits-ar-sa-huba" | |
headers = {"Authorization": f"Bearer {token}"} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.content | |
model = genai.GenerativeModel( | |
model_name="gemini-1.5-pro", | |
generation_config=generation_config, | |
# safety_settings = Adjust safety settings | |
# See https://ai.google.dev/gemini-api/docs/safety-settings | |
) | |
import torch | |
from typing import Any, Callable, Optional, Tuple, Union,Iterator | |
import numpy as np | |
import torch.nn as nn # Import the missing module | |
def _inference_forward_stream( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
speaker_embeddings: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
chunk_size: int = 32, # Chunk size for streaming output | |
) -> Iterator[torch.Tensor]: | |
"""Generates speech waveforms in a streaming fashion.""" | |
if attention_mask is not None: | |
padding_mask = attention_mask.unsqueeze(-1).float() | |
else: | |
padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
text_encoder_output = self.text_encoder( | |
input_ids=input_ids, | |
padding_mask=padding_mask, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
hidden_states = hidden_states.transpose(1, 2) | |
input_padding_mask = padding_mask.transpose(1, 2) | |
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
if self.config.use_stochastic_duration_prediction: | |
log_duration = self.duration_predictor( | |
hidden_states, | |
input_padding_mask, | |
speaker_embeddings, | |
reverse=True, | |
noise_scale=self.noise_scale_duration, | |
) | |
else: | |
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
length_scale = 1.0 / self.speaking_rate | |
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) | |
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() | |
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length) | |
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) | |
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) | |
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) | |
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) | |
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) | |
batch_size, _, output_length, input_length = attn_mask.shape | |
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) | |
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) | |
valid_indices = indices.unsqueeze(0) < cum_duration | |
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) | |
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] | |
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask | |
# Expand prior distribution | |
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) | |
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) | |
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale | |
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) | |
spectrogram = latents * output_padding_mask | |
for i in range(0, spectrogram.size(-1), chunk_size): | |
with torch.no_grad(): | |
wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings) | |
yield wav.squeeze().cpu().numpy() | |
def create_chat_session(): | |
chat_session = model.start_chat( | |
history=[ | |
{ | |
"role": "user", | |
"parts": [ | |
"السلام عليكم اريد منك ان ترد على اسئلتي دائما باللهجة السعودية النجدية \n\n", | |
], | |
}, | |
{ | |
"role": "model", | |
"parts": [ | |
"هلا والله، إسأل ما في خاطرك وأنا حاضر أساعدك، بس بشرط واحد، أسئلتك تكون واضحة عشان أفهم عليك عدل وأعطيك الجواب الزين. قل وش تبي وأنا حاضر! \n", | |
], | |
}, | |
{ | |
"role": "user", | |
"parts": [ | |
"كيف حالك اخبارك\n", | |
], | |
}, | |
{ | |
"role": "model", | |
"parts": [ | |
"هلا والله وغلا، أنا طيب وبخير الحمد لله، انت كيفك؟ عساك طيب؟ \n \n وش عندك أخبار؟ عسى كلها زينة. \n", | |
], | |
}, | |
{ | |
"role": "user", | |
"parts": [ | |
"اريد ايضا ان تكون اجابتك مختصره على سبيل المثال ااكثر اجابة سطرين\n", | |
], | |
}, | |
{ | |
"role": "model", | |
"parts": [ | |
"خلاص، فهمتك. من عيوني، أسئلتك من اليوم وطالع أجوبتها ما تتعدى سطرين. \n \n إسأل وشف! \n", | |
], | |
}, | |
] | |
) | |
return chat_session | |
# AI=create_chat_session() | |
def generate_audio(text,speaker_id=None): | |
inputs = tokenizer(text, return_tensors="pt")#.input_ids | |
speaker_embeddings = None | |
#torch.cuda.empty_cache() | |
with torch.no_grad(): | |
for chunk in _inference_forward_stream(model_vits,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256): | |
yield 16000,chunk#.squeeze().cpu().numpy()#.astype(np.int16).tobytes() | |
def get_answer_ai(text,session_ai): | |
if session_ai is None: | |
session_ai=create_chat_session() | |
try: | |
response = session_ai.send_message(text,stream=True) | |
return response,session_ai | |
except : | |
session_ai=create_chat_session() | |
response = session_ai.send_message(text,stream=True) | |
return response,session_ai | |
import torchaudio | |
def modelspeech(text): | |
audio_bytes = query({"inputs":text }) | |
wav, sr = torchaudio.load(audio_bytes) | |
return sr,wav.squeeze().cpu().numpy() | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt")#.cuda() | |
wav = model_vits(input_ids=inputs["input_ids"]).waveform.cpu().numpy().reshape(-1) | |
# display(Audio(wav, rate=model.config.sampling_rate)) | |
return model_vits.config.sampling_rate,wav#remove_noise_nr(wav) | |
def modelspeechstr(text): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt")#.cuda() | |
wav = model_vits(input_ids=inputs["input_ids"]).waveform.cpu().numpy().reshape(-1) | |
# display(Audio(wav, rate=model.config.sampling_rate)) | |
return np.array2string(wav) | |
import re | |
def clean_text(text): | |
# Remove symbols and extra spaces | |
cleaned_text = re.sub(r'[^\w\s]', ' ', text) # Remove symbols | |
cleaned_text = re.sub(r'\s+', ' ', cleaned_text) # Normalize spaces | |
return cleaned_text.strip() # Remove leading/trailing spaces | |
def text_to_speech(text,session_ai): | |
response = dash(text,session_ai,False) | |
pad_text='' | |
k=0 | |
for chunk in response: | |
chunk,session_ai=chunk | |
pad_text+=str(clean_text(chunk)) | |
if pad_text!='' and len(pad_text)>10: | |
out=pad_text | |
pad_text='' | |
k+=1 | |
yield modelspeech(out),session_ai | |
# for stream_wav in generate_audio(out): | |
# yield stream_wav | |
if pad_text!='': | |
yield modelspeech(pad_text),session_ai | |
# for stream_wav in generate_audio(pad_text): | |
# yield stream_wav | |
def text_to_speechstr(text,session_ai): | |
response = dash(text,session_ai,False) | |
pad_text='' | |
k=0 | |
for chunk in response: | |
chunk,session_ai=chunk | |
pad_text+=str(clean_text(chunk)) | |
if pad_text!='' and len(pad_text)>10: | |
out=pad_text | |
pad_text='' | |
k+=1 | |
yield modelspeechstr(out),session_ai | |
# for stream_wav in generate_audio(out): | |
# yield stream_wav | |
if pad_text!='': | |
yield modelspeechstr(pad_text),session_ai | |
def dash(text,session_ai,is_state=True): | |
response,session_ai=get_answer_ai(text,session_ai) | |
txt=' ' | |
for chunk in response: | |
if chunk is not None: | |
if is_state: | |
txt+=chunk.text | |
else: | |
txt=chunk.text | |
yield txt,session_ai | |
# demo = gr.Interface(fn=dash, inputs=["text"], outputs=['text']) | |
# demo.launch() | |
with gr.Blocks() as demo: | |
session_ai=gr.State() | |
with gr.Tab("AI Text "): | |
gr.Markdown("# Text to Speech") | |
text_input = gr.Textbox(label="Enter Text") | |
text_out = gr.Textbox() | |
text_input.submit(dash, [text_input,session_ai],[text_out,session_ai]) | |
with gr.Tab("AI Speech"): | |
gr.Markdown("# Text to Speech") | |
text_input2 = gr.Textbox(label="Enter Text") | |
audio_output = gr.Audio(streaming=True,autoplay=True) | |
text_input2.submit(text_to_speech, [text_input2,session_ai], [audio_output,session_ai]) | |
with gr.Tab("AI Speechstr"): | |
gr.Markdown("# Text to Speech") | |
text_input3 = gr.Textbox(label="Enter Text") | |
text_input4 = gr.Textbox(label="out Text") | |
text_input3.submit(text_to_speechstr, [text_input3,session_ai], [text_input4,session_ai]) | |
demo.launch(show_error=True) | |