Spaces:
Sleeping
Sleeping
ASG Models
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
|
4 |
import google.generativeai as genai
|
5 |
-
|
6 |
|
|
|
|
|
7 |
genai.configure(api_key=api_key)
|
|
|
|
|
|
|
|
|
8 |
|
9 |
generation_config = {
|
10 |
"temperature": 1,
|
@@ -79,6 +86,41 @@ def get_answer_ai(text):
|
|
79 |
AI=create_chat_session()
|
80 |
response = AI.send_message(text,stream=True)
|
81 |
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def dash(text):
|
83 |
|
84 |
response=get_answer_ai(text)
|
@@ -87,5 +129,20 @@ def dash(text):
|
|
87 |
# return textai
|
88 |
|
89 |
|
90 |
-
demo = gr.Interface(fn=dash, inputs=["text"], outputs=['text'])
|
91 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from transformers import AutoTokenizer,VitsModel
|
4 |
|
5 |
import google.generativeai as genai
|
6 |
+
import torch
|
7 |
|
8 |
+
api_key =os.environ.get("id_gmkey")
|
9 |
+
token=os.environ.get("key_")
|
10 |
genai.configure(api_key=api_key)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("asg2024/vits-ar-sa-huba",token=token)
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model=VitsModel.from_pretrained("asg2024/vits-ar-sa-huba",token=api_key).to(device)
|
14 |
+
|
15 |
|
16 |
generation_config = {
|
17 |
"temperature": 1,
|
|
|
86 |
AI=create_chat_session()
|
87 |
response = AI.send_message(text,stream=True)
|
88 |
return response
|
89 |
+
|
90 |
+
def modelspeech(text):
|
91 |
+
with torch.no_grad():
|
92 |
+
inputs = tokenizer(text, return_tensors="pt")#.cuda()
|
93 |
+
|
94 |
+
wav = model(input_ids=inputs["input_ids"].to(device)).waveform.cpu().numpy().reshape(-1)
|
95 |
+
# display(Audio(wav, rate=model.config.sampling_rate))
|
96 |
+
return model.config.sampling_rate,wav#remove_noise_nr(wav)
|
97 |
+
|
98 |
+
import re
|
99 |
+
def clean_text(text):
|
100 |
+
# Remove symbols and extra spaces
|
101 |
+
cleaned_text = re.sub(r'[^\w\s]', '', text) # Remove symbols
|
102 |
+
cleaned_text = re.sub(r'\s+', ' ', cleaned_text) # Normalize spaces
|
103 |
+
return cleaned_text.strip() # Remove leading/trailing spaces
|
104 |
+
|
105 |
+
|
106 |
+
def text_to_speech(text):
|
107 |
+
|
108 |
+
job = dash(text)
|
109 |
+
pad_text=''
|
110 |
+
k=0
|
111 |
+
for chunk in job:
|
112 |
+
|
113 |
+
pad_text+=str(clean_text(chunk))
|
114 |
+
|
115 |
+
if pad_text!='' and len(pad_text)>10:
|
116 |
+
out=pad_text
|
117 |
+
pad_text=''
|
118 |
+
k+=1
|
119 |
+
|
120 |
+
yield modelspeech(out)
|
121 |
+
if k==0:
|
122 |
+
out=pad_text
|
123 |
+
yield modelspeech(pad_text)
|
124 |
def dash(text):
|
125 |
|
126 |
response=get_answer_ai(text)
|
|
|
129 |
# return textai
|
130 |
|
131 |
|
132 |
+
# demo = gr.Interface(fn=dash, inputs=["text"], outputs=['text'])
|
133 |
+
# demo.launch()
|
134 |
+
|
135 |
+
with gr.Blocks() as demo:
|
136 |
+
with gr.Tab("AI Text "):
|
137 |
+
gr.Markdown("# Text to Speech")
|
138 |
+
text_input = gr.Textbox(label="Enter Text")
|
139 |
+
text_out = gr.Textbox()
|
140 |
+
text_input.submit(dash, text_input, text_out)
|
141 |
+
with gr.Tab("AI Speech"):
|
142 |
+
gr.Markdown("# Text to Speech")
|
143 |
+
text_input2 = gr.Textbox(label="Enter Text")
|
144 |
+
audio_output = gr.Audio(streaming=True)
|
145 |
+
text_input2.submit(text_to_speech, text_input2, audio_output)
|
146 |
+
|
147 |
+
|
148 |
+
demo.launch(show_error=True)
|