import os import numpy as np import gradio as gr # Use a pipeline as a high-level helper import requests API_URL = "https://api-inference.huggingface.co/models/asg2024/vits-ar-sa" def query(text): payload={"inputs": text} response = requests.post(API_URL, json=payload) return response.content def reverse_audio(text): data = query(text) return (16000, np.flipud(data)) demo = gr.Interface( fn=reverse_audio, inputs="text", outputs="audio" ) if __name__ == "__main__": demo.launch()