Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,20 @@
|
|
|
|
|
|
1 |
from langchain.vectorstores import Qdrant
|
2 |
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
from qdrant_client import QdrantClient
|
4 |
import gradio as gr
|
5 |
from transformers.utils import logging
|
|
|
6 |
logging.set_verbosity_info()
|
7 |
logger = logging.get_logger("transformers")
|
|
|
|
|
8 |
|
9 |
def process_text(input_text, top_k):
|
10 |
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-base")
|
11 |
client = QdrantClient(
|
12 |
-
|
13 |
)
|
14 |
db = Qdrant(client=client, embeddings=embeddings, collection_name="qa_data")
|
15 |
query = input_text
|
@@ -18,7 +23,6 @@ def process_text(input_text, top_k):
|
|
18 |
docs = db.similarity_search_with_score(query=query, k=top_k)
|
19 |
for i in docs:
|
20 |
doc, score = i
|
21 |
-
print({"score": score, "content": doc.page_content, "metadata": doc.metadata} )
|
22 |
all_answers.append(doc.metadata["source"])
|
23 |
|
24 |
return "\n***\\n".join(all_answers)
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
from langchain.vectorstores import Qdrant
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from qdrant_client import QdrantClient
|
6 |
import gradio as gr
|
7 |
from transformers.utils import logging
|
8 |
+
|
9 |
logging.set_verbosity_info()
|
10 |
logger = logging.get_logger("transformers")
|
11 |
+
qdrant_url = os.environ['QDRANT_URL']
|
12 |
+
qdrant_api_key = os.environ['QDRANT_API_KEY']
|
13 |
|
14 |
def process_text(input_text, top_k):
|
15 |
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-base")
|
16 |
client = QdrantClient(
|
17 |
+
url=qdrant_url, api_key=qdrant_api_key, prefer_grpc=False,
|
18 |
)
|
19 |
db = Qdrant(client=client, embeddings=embeddings, collection_name="qa_data")
|
20 |
query = input_text
|
|
|
23 |
docs = db.similarity_search_with_score(query=query, k=top_k)
|
24 |
for i in docs:
|
25 |
doc, score = i
|
|
|
26 |
all_answers.append(doc.metadata["source"])
|
27 |
|
28 |
return "\n***\\n".join(all_answers)
|