Wan2.1-VACE-14B / app.py
jiandan1998's picture
Update app.py
a4877a3 verified
raw
history blame
13.5 kB
import os
import requests
import json
import time
import random
import base64
import uuid
import threading
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import torch
import logging
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
load_dotenv()
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
class SessionManager:
_instances = {}
_lock = threading.Lock()
@classmethod
def get_session(cls, session_id):
with cls._lock:
if session_id not in cls._instances:
cls._instances[session_id] = {
'count': 0,
'history': [],
'last_active': time.time()
}
return cls._instances[session_id]
@classmethod
def cleanup_sessions(cls):
with cls._lock:
now = time.time()
expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600]
for k in expired:
del cls._instances[k]
class RateLimiter:
def __init__(self):
self.clients = {}
self.lock = threading.Lock()
def check(self, client_id):
with self.lock:
now = time.time()
if client_id not in self.clients:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if now > self.clients[client_id]['reset']:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if self.clients[client_id]['count'] >= 20:
return False
self.clients[client_id]['count'] += 1
return True
session_manager = SessionManager()
rate_limiter = RateLimiter()
def create_error_image(message):
img = Image.new("RGB", (832, 480), "#ffdddd")
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
draw = ImageDraw.Draw(img)
text = f"Error: {message[:60]}..." if len(message) > 60 else message
draw.text((50, 200), text, fill="#ff0000", font=font)
img.save("error.jpg")
return "error.jpg"
def classify_prompt(prompt):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
return torch.argmax(outputs.logits).item()
def image_to_base64(file_path):
try:
with open(file_path, "rb") as image_file:
raw_data = image_file.read()
encoded = base64.b64encode(raw_data)
missing_padding = len(encoded) % 4
if missing_padding:
encoded += b'=' * (4 - missing_padding)
return encoded.decode('utf-8')
except Exception as e:
raise ValueError(f"Base64编码失败: {str(e)}")
def video_to_base64(file_path):
"""
将视频文件转换为Base64格式
"""
try:
with open(file_path, "rb") as video_file:
raw_data = video_file.read()
encoded = base64.b64encode(raw_data)
missing_padding = len(encoded) % 4
if missing_padding:
encoded += b'=' * (4 - missing_padding)
return encoded.decode('utf-8')
except Exception as e:
raise ValueError(f"Base64编码失败: {str(e)}")
def generate_video(
context_scale,
enable_safety_checker,
enable_fast_mode,
flow_shift,
guidance_scale,
images,
negative_prompt,
num_inference_steps,
prompt,
seed,
size,
task,
video,
session_id,
):
safety_level = classify_prompt(prompt)
if safety_level != 0:
error_img = create_error_image(CLASS_NAMES[safety_level])
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img
return
if not rate_limiter.check(session_id):
error_img = create_error_image("每小时限制20次请求")
yield "❌ rate limit exceeded", error_img
return
session = session_manager.get_session(session_id)
session['last_active'] = time.time()
session['count'] += 1
API_KEY = "30a09de38569400bcdab9cec1c9a660b1924a2b5f54aa386eeb87f96a112fb93"
if not API_KEY:
error_img = create_error_image("API key not found")
yield "❌ Error: Missing API Key", error_img
return
try:
base64_images = []
if images is not None: # 检查 images 是否为 None
for img_path in images:
base64_img = image_to_base64(img_path)
base64_images.append(base64_img)
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌failed to upload images: {str(e)}", error_img
return
video_payload = ""
if video is not None:
if isinstance(video, (list, tuple)):
video_payload = video[0] if video else ""
else:
video_payload = video
# 将视频文件转换为Base64格式
try:
base64_video = video_to_base64(video_payload)
video_payload = base64_video
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ Failed to encode video: {str(e)}", error_img
return
payload = {
"context_scale": context_scale,
"enable_fast_mode": enable_fast_mode,
"enable_safety_checker": enable_safety_checker,
"flow_shift": flow_shift,
"guidance_scale": guidance_scale,
"images": base64_images,
"negative_prompt": negative_prompt,
"num_inference_steps": num_inference_steps,
"prompt": prompt,
"seed": seed if seed != -1 else random.randint(0, 999999),
"size": size,
"task": task,
"video": str(video_payload) if video_payload else "",
}
logging.debug(f"API request payload: {json.dumps(payload, indent=2)}")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
try:
response = requests.post(
"https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1-14b-vace",
headers=headers,
data=json.dumps(payload)
)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ API Error ({response.status_code}): {response.text}", error_img
return
request_id = response.json()["data"]["id"]
yield f"✅ Task ID (ID: {request_id})", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ Connection Error: {str(e)}", error_img
return
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
start_time = time.time()
while True:
time.sleep(0.5)
try:
response = requests.get(result_url, headers=headers)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ 轮询错误 ({response.status_code}): {response.text}", error_img
return
data = response.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
video_url = data['outputs'][0]
session["history"].append(video_url)
yield (f"🎉 完成! 耗时 {elapsed:.1f}秒\n"
f"下载链接: {video_url}"), video_url
return
elif status == "failed":
error_img = create_error_image(data.get('error', '未知错误'))
yield f"❌ 任务失败: {data.get('error', '未知错误')}", error_img
return
else:
yield f"⏳ 状态: {status.capitalize()}...", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 轮询失败: {str(e)}", error_img
return
def cleanup_task():
while True:
session_manager.cleanup_sessions()
time.sleep(3600)
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.video-preview { max-width: 600px !important; }
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
.error { background: #ffebee; border: 1px solid #ef9a9a; }
#centered_button {
align-self: center !important;
height: fit-content !important;
margin-top: 22px !important; # 根据输入框高度微调
}
"""
) as app:
session_id = gr.State(str(uuid.uuid4()))
gr.Markdown("# 🌊Wan-2.1-14B-Vace Run On [WaveSpeedAI](https://wavespeed.ai/)")
gr.Markdown("""VACE is an all-in-one model designed for video creation and editing. It encompasses various tasks, including reference-to-video generation (R2V), video-to-video editing (V2V), and masked video-to-video editing (MV2V), allowing users to compose these tasks freely. This functionality enables users to explore diverse possibilities and streamlines their workflows effectively, offering a range of capabilities, such as Move-Anything, Swap-Anything, Reference-Anything, Expand-Anything, Animate-Anything, and more.""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
images = gr.File(label="upload image", file_count="multiple", file_types=["image"], type="filepath", elem_id="image-uploader",
scale=1)
video = gr.Video(label="Input Video", format="mp4", sources=["upload"],
scale=1)
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
with gr.Row():
size = gr.Dropdown(["832*480", "480*832"], value="832*480", label="Size")
task = gr.Dropdown(["depth", "pose"], value="depth", label="Task")
with gr.Row():
num_inference_steps = gr.Slider(1, 100, value=20, step=1, label="Inference Steps")
context_scale = gr.Slider(0, 2, value=1, step=0.1, label="Context Scale")
with gr.Row():
guidance = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance_Scale")
flow_shift = gr.Slider(1, 20, value=16, step=1, label="Shift")
with gr.Row():
seed = gr.Number(-1, label="Seed")
random_seed_btn = gr.Button("Random🎲Seed", variant="secondary", elem_id="centered_button")
with gr.Row():
enable_safety_checker = gr.Checkbox(True, label="Enable Safety Checker", interactive=True)
enable_fast_mode = gr.Checkbox(True, label="To enable the fast mode, please visit Wave Speed AI", interactive=False)
with gr.Column(scale=1):
video_output = gr.Video(label="Video Output", format="mp4", interactive=False, elem_classes=["video-preview"])
generate_btn = gr.Button("Generate", variant="primary")
status_output = gr.Textbox(label="status", interactive=False, lines=4)
gr.Examples(
examples=[
[
"The elegant lady carefully selects bags in the boutique, and she shows the charm of a mature woman in a black slim dress with a pearl necklace, as well as her pretty face. Holding a vintage-inspired blue leather half-moon handbag, she is carefully observing its craftsmanship and texture. The interior of the store is a haven of sophistication and luxury. Soft, ambient lighting casts a warm glow over the polished wooden floors",
[
"https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413751234102420_md9ywspl.png",
"https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413586520964413_7bkgc9ol.png"
]
]
],
inputs=[prompt, images],
)
random_seed_btn.click(
fn=lambda: random.randint(0, 999999),
outputs=seed
)
generate_btn.click(
generate_video,
inputs=[
context_scale,
enable_safety_checker,
enable_fast_mode,
flow_shift,
guidance,
images,
negative_prompt,
num_inference_steps,
prompt,
seed,
size,
task,
video,
session_id,
],
outputs=[status_output, video_output]
)
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("gradio_app.log"),
logging.StreamHandler()
]
)
gradio_logger = logging.getLogger("gradio")
gradio_logger.setLevel(logging.INFO)
if __name__ == "__main__":
threading.Thread(target=cleanup_task, daemon=True).start()
app.queue(max_size=4).launch(
server_name="0.0.0.0",
max_threads=16,
server_port=8009,
share=False
)