Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import random
|
6 |
+
import base64
|
7 |
+
import uuid
|
8 |
+
import threading
|
9 |
+
from pathlib import Path
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
import gradio as gr
|
12 |
+
import torch
|
13 |
+
import logging
|
14 |
+
from PIL import Image, ImageDraw, ImageFont
|
15 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
MODEL_URL = "TostAI/nsfw-text-detection-large"
|
20 |
+
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
|
22 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
|
23 |
+
|
24 |
+
class SessionManager:
|
25 |
+
_instances = {}
|
26 |
+
_lock = threading.Lock()
|
27 |
+
|
28 |
+
@classmethod
|
29 |
+
def get_session(cls, session_id):
|
30 |
+
with cls._lock:
|
31 |
+
if session_id not in cls._instances:
|
32 |
+
cls._instances[session_id] = {
|
33 |
+
'count': 0,
|
34 |
+
'history': [],
|
35 |
+
'last_active': time.time()
|
36 |
+
}
|
37 |
+
return cls._instances[session_id]
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def cleanup_sessions(cls):
|
41 |
+
with cls._lock:
|
42 |
+
now = time.time()
|
43 |
+
expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600]
|
44 |
+
for k in expired:
|
45 |
+
del cls._instances[k]
|
46 |
+
|
47 |
+
class RateLimiter:
|
48 |
+
def __init__(self):
|
49 |
+
self.clients = {}
|
50 |
+
self.lock = threading.Lock()
|
51 |
+
|
52 |
+
def check(self, client_id):
|
53 |
+
with self.lock:
|
54 |
+
now = time.time()
|
55 |
+
if client_id not in self.clients:
|
56 |
+
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
|
57 |
+
return True
|
58 |
+
if now > self.clients[client_id]['reset']:
|
59 |
+
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
|
60 |
+
return True
|
61 |
+
if self.clients[client_id]['count'] >= 20:
|
62 |
+
return False
|
63 |
+
self.clients[client_id]['count'] += 1
|
64 |
+
return True
|
65 |
+
|
66 |
+
session_manager = SessionManager()
|
67 |
+
rate_limiter = RateLimiter()
|
68 |
+
|
69 |
+
def create_error_image(message):
|
70 |
+
img = Image.new("RGB", (832, 480), "#ffdddd")
|
71 |
+
try:
|
72 |
+
font = ImageFont.truetype("arial.ttf", 24)
|
73 |
+
except:
|
74 |
+
font = ImageFont.load_default()
|
75 |
+
draw = ImageDraw.Draw(img)
|
76 |
+
text = f"Error: {message[:60]}..." if len(message) > 60 else message
|
77 |
+
draw.text((50, 200), text, fill="#ff0000", font=font)
|
78 |
+
img.save("error.jpg")
|
79 |
+
return "error.jpg"
|
80 |
+
|
81 |
+
def classify_prompt(prompt):
|
82 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
83 |
+
with torch.no_grad():
|
84 |
+
outputs = model(**inputs)
|
85 |
+
return torch.argmax(outputs.logits).item()
|
86 |
+
|
87 |
+
def image_to_base64(file_path):
|
88 |
+
try:
|
89 |
+
with open(file_path, "rb") as image_file:
|
90 |
+
raw_data = image_file.read()
|
91 |
+
encoded = base64.b64encode(raw_data)
|
92 |
+
missing_padding = len(encoded) % 4
|
93 |
+
if missing_padding:
|
94 |
+
encoded += b'=' * (4 - missing_padding)
|
95 |
+
return encoded.decode('utf-8')
|
96 |
+
except Exception as e:
|
97 |
+
raise ValueError(f"Base64编码失败: {str(e)}")
|
98 |
+
|
99 |
+
def generate_video(
|
100 |
+
context_scale,
|
101 |
+
enable_safety_checker,
|
102 |
+
flow_shift,
|
103 |
+
guidance_scale,
|
104 |
+
images,
|
105 |
+
negative_prompt,
|
106 |
+
num_inference_steps,
|
107 |
+
prompt,
|
108 |
+
seed,
|
109 |
+
size,
|
110 |
+
task,
|
111 |
+
video,
|
112 |
+
session_id,
|
113 |
+
):
|
114 |
+
|
115 |
+
safety_level = classify_prompt(prompt)
|
116 |
+
if safety_level != 0:
|
117 |
+
error_img = create_error_image(CLASS_NAMES[safety_level])
|
118 |
+
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img
|
119 |
+
return
|
120 |
+
|
121 |
+
if not rate_limiter.check(session_id):
|
122 |
+
error_img = create_error_image("每小时限制20次请求")
|
123 |
+
yield "❌ 请求过于频繁,请稍后再试", error_img
|
124 |
+
return
|
125 |
+
|
126 |
+
session = session_manager.get_session(session_id)
|
127 |
+
session['last_active'] = time.time()
|
128 |
+
session['count'] += 1
|
129 |
+
|
130 |
+
API_KEY = os.getenv("WAVESPEED_API_KEY")
|
131 |
+
if not API_KEY:
|
132 |
+
error_img = create_error_image("API密钥缺失")
|
133 |
+
yield "❌ Error: Missing API Key", error_img
|
134 |
+
return
|
135 |
+
|
136 |
+
try:
|
137 |
+
if not images or len(images) < 2:
|
138 |
+
raise ValueError("需要上传至少两张图片")
|
139 |
+
|
140 |
+
base64_images = []
|
141 |
+
for img_path in images[:2]:
|
142 |
+
base64_img = image_to_base64(img_path)
|
143 |
+
base64_images.append(base64_img)
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
error_img = create_error_image(str(e))
|
147 |
+
yield f"❌ 文件处理失败: {str(e)}", error_img
|
148 |
+
return
|
149 |
+
|
150 |
+
video_payload = ""
|
151 |
+
if video is not None:
|
152 |
+
if isinstance(video, (list, tuple)):
|
153 |
+
video_payload = video[0] if video else ""
|
154 |
+
else:
|
155 |
+
video_payload = video
|
156 |
+
|
157 |
+
payload = {
|
158 |
+
"context_scale": context_scale,
|
159 |
+
"enable_fast_mode": False,
|
160 |
+
"enable_safety_checker": enable_safety_checker,
|
161 |
+
"flow_shift": flow_shift,
|
162 |
+
"guidance_scale": guidance_scale,
|
163 |
+
"images": base64_images,
|
164 |
+
"negative_prompt": negative_prompt,
|
165 |
+
"num_inference_steps": num_inference_steps,
|
166 |
+
"prompt": prompt,
|
167 |
+
"seed": seed if seed != -1 else random.randint(0, 999999),
|
168 |
+
"size": size,
|
169 |
+
"task": task,
|
170 |
+
"video": str(video_payload) if video_payload else "",
|
171 |
+
}
|
172 |
+
|
173 |
+
logging.debug(f"API请求payload: {json.dumps(payload, indent=2)}")
|
174 |
+
|
175 |
+
headers = {
|
176 |
+
"Content-Type": "application/json",
|
177 |
+
"Authorization": f"Bearer {API_KEY}",
|
178 |
+
}
|
179 |
+
|
180 |
+
|
181 |
+
try:
|
182 |
+
response = requests.post(
|
183 |
+
"https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1-14b-vace",
|
184 |
+
headers=headers,
|
185 |
+
data=json.dumps(payload)
|
186 |
+
)
|
187 |
+
|
188 |
+
if response.status_code != 200:
|
189 |
+
error_img = create_error_image(response.text)
|
190 |
+
yield f"❌ API错误 ({response.status_code}): {response.text}", error_img
|
191 |
+
return
|
192 |
+
|
193 |
+
request_id = response.json()["data"]["id"]
|
194 |
+
yield f"✅ 任务已提交 (ID: {request_id})", None
|
195 |
+
except Exception as e:
|
196 |
+
error_img = create_error_image(str(e))
|
197 |
+
yield f"❌ 连接错误: {str(e)}", error_img
|
198 |
+
return
|
199 |
+
|
200 |
+
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
|
201 |
+
start_time = time.time()
|
202 |
+
|
203 |
+
while True:
|
204 |
+
time.sleep(0.5)
|
205 |
+
try:
|
206 |
+
response = requests.get(result_url, headers=headers)
|
207 |
+
if response.status_code != 200:
|
208 |
+
error_img = create_error_image(response.text)
|
209 |
+
yield f"❌ 轮询错误 ({response.status_code}): {response.text}", error_img
|
210 |
+
return
|
211 |
+
|
212 |
+
data = response.json()["data"]
|
213 |
+
status = data["status"]
|
214 |
+
|
215 |
+
if status == "completed":
|
216 |
+
elapsed = time.time() - start_time
|
217 |
+
video_url = data['outputs'][0]
|
218 |
+
session["history"].append(video_url)
|
219 |
+
yield (f"🎉 完成! 耗时 {elapsed:.1f}秒\n"
|
220 |
+
f"下载链接: {video_url}"), video_url
|
221 |
+
return
|
222 |
+
|
223 |
+
elif status == "failed":
|
224 |
+
error_img = create_error_image(data.get('error', '未知错误'))
|
225 |
+
yield f"❌ 任务失败: {data.get('error', '未知错误')}", error_img
|
226 |
+
return
|
227 |
+
|
228 |
+
else:
|
229 |
+
yield f"⏳ 状态: {status.capitalize()}...", None
|
230 |
+
|
231 |
+
except Exception as e:
|
232 |
+
error_img = create_error_image(str(e))
|
233 |
+
yield f"❌ 轮询失败: {str(e)}", error_img
|
234 |
+
return
|
235 |
+
|
236 |
+
def cleanup_task():
|
237 |
+
while True:
|
238 |
+
session_manager.cleanup_sessions()
|
239 |
+
time.sleep(3600)
|
240 |
+
|
241 |
+
with gr.Blocks(
|
242 |
+
theme=gr.themes.Soft(),
|
243 |
+
css="""
|
244 |
+
.video-preview { max-width: 600px !important; }
|
245 |
+
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
|
246 |
+
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
|
247 |
+
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
|
248 |
+
.error { background: #ffebee; border: 1px solid #ef9a9a; }
|
249 |
+
"""
|
250 |
+
) as app:
|
251 |
+
|
252 |
+
session_id = gr.State(str(uuid.uuid4()))
|
253 |
+
|
254 |
+
gr.Markdown("# 🌊Wan-2.1-14B-Vace Run On [WaveSpeedAI](https://wavespeed.ai/)")
|
255 |
+
gr.Markdown("""VACE is an all-in-one model designed for video creation and editing. It encompasses various tasks, including reference-to-video generation (R2V), video-to-video editing (V2V), and masked video-to-video editing (MV2V), allowing users to compose these tasks freely. This functionality enables users to explore diverse possibilities and streamlines their workflows effectively, offering a range of capabilities, such as Move-Anything, Swap-Anything, Reference-Anything, Expand-Anything, Animate-Anything, and more.""")
|
256 |
+
|
257 |
+
with gr.Row():
|
258 |
+
with gr.Column(scale=1):
|
259 |
+
images = gr.File(label="upload image", file_count="multiple", file_types=["image"], type="filepath", elem_id="image-uploader")
|
260 |
+
video = gr.Video(label="Input Video", format="mp4", sources=["upload"])
|
261 |
+
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Prompt...")
|
262 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
|
263 |
+
size = gr.Dropdown(["832*480", "480*832"], value="832*480", label="Size")
|
264 |
+
context_scale = gr.Slider(0, 2, value=1, step=0.1, label="Context Scale")
|
265 |
+
num_inference_steps = gr.Slider(1, 100, value=20, step=1, label="Inference Steps")
|
266 |
+
task = gr.Dropdown(["depth", "pose"], value="depth", label="Task")
|
267 |
+
seed = gr.Number(-1, label="Seed")
|
268 |
+
random_seed_btn = gr.Button("Random🎲Seed", variant="secondary")
|
269 |
+
guidance = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance_Scale")
|
270 |
+
flow_shift = gr.Slider(1, 20, value=16, step=1, label="Shift")
|
271 |
+
enable_safety_checker = gr.Checkbox(True, label="Enable Safety Checker", interactive=True)
|
272 |
+
with gr.Column(scale=1):
|
273 |
+
video_output = gr.Video(label="Video Output", format="mp4", interactive=False, elem_classes=["video-preview"])
|
274 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
275 |
+
status_output = gr.Textbox(label="status", interactive=False, lines=4)
|
276 |
+
gr.Examples(
|
277 |
+
examples=[
|
278 |
+
[
|
279 |
+
"The elegant lady carefully selects bags in the boutique, and she shows the charm of a mature woman in a black slim dress with a pearl necklace, as well as her pretty face. Holding a vintage-inspired blue leather half-moon handbag, she is carefully observing its craftsmanship and texture. The interior of the store is a haven of sophistication and luxury. Soft, ambient lighting casts a warm glow over the polished wooden floors",
|
280 |
+
[
|
281 |
+
"https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413751234102420_md9ywspl.png",
|
282 |
+
"https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413586520964413_7bkgc9ol.png"
|
283 |
+
]
|
284 |
+
]
|
285 |
+
],
|
286 |
+
inputs=[prompt, images],
|
287 |
+
)
|
288 |
+
|
289 |
+
random_seed_btn.click(
|
290 |
+
fn=lambda: random.randint(0, 999999),
|
291 |
+
outputs=seed
|
292 |
+
)
|
293 |
+
|
294 |
+
generate_btn.click(
|
295 |
+
generate_video,
|
296 |
+
inputs=[
|
297 |
+
context_scale,
|
298 |
+
enable_safety_checker,
|
299 |
+
flow_shift,
|
300 |
+
guidance,
|
301 |
+
images,
|
302 |
+
negative_prompt,
|
303 |
+
num_inference_steps,
|
304 |
+
prompt,
|
305 |
+
seed,
|
306 |
+
size,
|
307 |
+
task,
|
308 |
+
video,
|
309 |
+
session_id,
|
310 |
+
],
|
311 |
+
outputs=[status_output, video_output]
|
312 |
+
)
|
313 |
+
|
314 |
+
logging.basicConfig(
|
315 |
+
level=logging.DEBUG,
|
316 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
317 |
+
handlers=[
|
318 |
+
logging.FileHandler("gradio_app.log"),
|
319 |
+
logging.StreamHandler()
|
320 |
+
]
|
321 |
+
)
|
322 |
+
|
323 |
+
gradio_logger = logging.getLogger("gradio")
|
324 |
+
gradio_logger.setLevel(logging.INFO)
|
325 |
+
|
326 |
+
if __name__ == "__main__":
|
327 |
+
threading.Thread(target=cleanup_task, daemon=True).start()
|
328 |
+
app.queue(max_size=4).launch(
|
329 |
+
server_name="0.0.0.0",
|
330 |
+
max_threads=16,
|
331 |
+
share=False
|
332 |
+
)
|