Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,8 @@ import json
|
|
4 |
import time
|
5 |
import threading
|
6 |
import uuid
|
7 |
-
import shutil
|
8 |
import base64
|
9 |
-
from datetime import datetime
|
10 |
from pathlib import Path
|
11 |
-
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
12 |
from dotenv import load_dotenv
|
13 |
import gradio as gr
|
14 |
import random
|
@@ -84,7 +81,6 @@ def image_to_base64(file_path):
|
|
84 |
if len(img_data) == 0:
|
85 |
raise ValueError("空文件")
|
86 |
|
87 |
-
# 使用URL安全编码并自动填充
|
88 |
encoded = base64.urlsafe_b64encode(img_data)
|
89 |
missing_padding = len(encoded) % 4
|
90 |
if missing_padding:
|
@@ -118,7 +114,7 @@ def classify_prompt(prompt):
|
|
118 |
return torch.argmax(outputs.logits).item()
|
119 |
|
120 |
def generate_video(
|
121 |
-
|
122 |
prompt,
|
123 |
duration,
|
124 |
enable_safety,
|
@@ -131,6 +127,11 @@ def generate_video(
|
|
131 |
session_id
|
132 |
):
|
133 |
|
|
|
|
|
|
|
|
|
|
|
134 |
safety_level = classify_prompt(prompt)
|
135 |
if safety_level != 0:
|
136 |
error_img = create_error_image(CLASS_NAMES[safety_level])
|
@@ -150,24 +151,26 @@ def generate_video(
|
|
150 |
api_key = os.getenv("WAVESPEED_API_KEY")
|
151 |
if not api_key:
|
152 |
raise ValueError("API key missing")
|
153 |
-
|
154 |
-
|
|
|
155 |
headers = {
|
156 |
"Authorization": f"Bearer {api_key}",
|
157 |
"Content-Type": "application/json"
|
158 |
-
|
159 |
|
160 |
payload = {
|
161 |
-
"
|
162 |
-
"
|
|
|
|
|
163 |
"flow_shift": flow_shift,
|
|
|
164 |
"guidance_scale": guidance,
|
165 |
-
"images": [base64_img],
|
166 |
"negative_prompt": negative_prompt,
|
167 |
"num_inference_steps": steps,
|
168 |
-
"
|
169 |
-
"
|
170 |
-
"size": "480*832"
|
171 |
}
|
172 |
|
173 |
response = requests.post(
|
@@ -236,44 +239,56 @@ with gr.Blocks(
|
|
236 |
|
237 |
session_id = gr.State(str(uuid.uuid4()))
|
238 |
|
239 |
-
gr.Markdown("# 🌊 Wan-2.1-
|
|
|
|
|
|
|
240 |
gr.Markdown("""
|
241 |
-
[WaveSpeedAI](https://wavespeed.ai/)
|
242 |
-
Our in-house inference accelerator provides lossless speedup on image & video generation based on our rich inference optimization software stack, including our in-house inference compiler, CUDA kernel libraries and parallel computing libraries.
|
243 |
""")
|
244 |
|
245 |
with gr.Row():
|
246 |
with gr.Column(scale=1):
|
247 |
-
img_input = gr.
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
250 |
|
251 |
with gr.Row():
|
252 |
-
size = gr.Dropdown(
|
253 |
-
|
|
|
|
|
|
|
|
|
254 |
with gr.Row():
|
255 |
-
duration = gr.Slider(1, 10, value=5, step=1, label="
|
256 |
-
guidance = gr.Slider(1, 20, value=7, label="
|
257 |
with gr.Row():
|
258 |
-
seed = gr.Number(-1, label="
|
259 |
-
random_seed_btn = gr.Button("
|
260 |
with gr.Row():
|
261 |
-
enable_safety = gr.Checkbox(label="🔒
|
262 |
-
flow_shift = gr.Slider(1, 50, value=16, label="
|
263 |
|
264 |
with gr.Column(scale=1):
|
265 |
-
video_output = gr.Video(label="
|
266 |
-
status_output = gr.Textbox(label="
|
267 |
-
generate_btn = gr.Button("
|
268 |
|
269 |
gr.Examples(
|
270 |
-
examples=[
|
271 |
-
|
272 |
-
|
|
|
|
|
273 |
]
|
274 |
-
],
|
275 |
inputs=[prompt, img_input],
|
276 |
-
label="
|
277 |
examples_per_page=3
|
278 |
)
|
279 |
|
@@ -297,10 +312,7 @@ with gr.Blocks(
|
|
297 |
size,
|
298 |
session_id
|
299 |
],
|
300 |
-
outputs=[
|
301 |
-
status_output,
|
302 |
-
video_output
|
303 |
-
]
|
304 |
)
|
305 |
|
306 |
if __name__ == "__main__":
|
|
|
4 |
import time
|
5 |
import threading
|
6 |
import uuid
|
|
|
7 |
import base64
|
|
|
8 |
from pathlib import Path
|
|
|
9 |
from dotenv import load_dotenv
|
10 |
import gradio as gr
|
11 |
import random
|
|
|
81 |
if len(img_data) == 0:
|
82 |
raise ValueError("空文件")
|
83 |
|
|
|
84 |
encoded = base64.urlsafe_b64encode(img_data)
|
85 |
missing_padding = len(encoded) % 4
|
86 |
if missing_padding:
|
|
|
114 |
return torch.argmax(outputs.logits).item()
|
115 |
|
116 |
def generate_video(
|
117 |
+
image_files,
|
118 |
prompt,
|
119 |
duration,
|
120 |
enable_safety,
|
|
|
127 |
session_id
|
128 |
):
|
129 |
|
130 |
+
if len(image_files) != 2:
|
131 |
+
error_img = create_error_image("upload 2 images")
|
132 |
+
yield "❌ error: upload 2 images", error_img
|
133 |
+
return
|
134 |
+
|
135 |
safety_level = classify_prompt(prompt)
|
136 |
if safety_level != 0:
|
137 |
error_img = create_error_image(CLASS_NAMES[safety_level])
|
|
|
151 |
api_key = os.getenv("WAVESPEED_API_KEY")
|
152 |
if not api_key:
|
153 |
raise ValueError("API key missing")
|
154 |
+
|
155 |
+
base64_images = [image_to_base64(img) for img in image_files]
|
156 |
+
|
157 |
headers = {
|
158 |
"Authorization": f"Bearer {api_key}",
|
159 |
"Content-Type": "application/json"
|
160 |
+
}
|
161 |
|
162 |
payload = {
|
163 |
+
"seed": seed if seed != -1 else random.randint(0, 999999),
|
164 |
+
"size": size.replace(" ", ""),
|
165 |
+
"images": base64_images,
|
166 |
+
"prompt": prompt,
|
167 |
"flow_shift": flow_shift,
|
168 |
+
"context_scale": 1,
|
169 |
"guidance_scale": guidance,
|
|
|
170 |
"negative_prompt": negative_prompt,
|
171 |
"num_inference_steps": steps,
|
172 |
+
"enable_safety_checker": enable_safety,
|
173 |
+
"model_id": "wavespeed-ai/wan-2.1-14b-vace"
|
|
|
174 |
}
|
175 |
|
176 |
response = requests.post(
|
|
|
239 |
|
240 |
session_id = gr.State(str(uuid.uuid4()))
|
241 |
|
242 |
+
gr.Markdown("# 🌊 Wan-2.1-14B-VACE")
|
243 |
+
gr.Markdown("
|
244 |
+
VACE is an all-in-one model designed for video creation and editing. It encompasses various tasks, including reference-to-video generation (R2V), video-to-video editing (V2V), and masked video-to-video editing (MV2V), allowing users to compose these tasks freely. This functionality enables users to explore diverse possibilities and streamlines their workflows effectively, offering a range of capabilities, such as Move-Anything, Swap-Anything, Reference-Anything, Expand-Anything, Animate-Anything, and more."
|
245 |
+
)
|
246 |
gr.Markdown("""
|
247 |
+
[WaveSpeedAI](https://wavespeed.ai/) 提供先进的AI视频生成加速技术
|
|
|
248 |
""")
|
249 |
|
250 |
with gr.Row():
|
251 |
with gr.Column(scale=1):
|
252 |
+
img_input = gr.File(
|
253 |
+
file_count="multiple",
|
254 |
+
file_types=["image"],
|
255 |
+
label="upload 2 images"
|
256 |
+
)
|
257 |
+
prompt = gr.Textbox(label="prompt", lines=3, placeholder="请输入描述...")
|
258 |
+
negative_prompt = gr.Textbox(label="negative_prompt", lines=2)
|
259 |
|
260 |
with gr.Row():
|
261 |
+
size = gr.Dropdown(
|
262 |
+
["480*832", "832*480"],
|
263 |
+
value="480*832",
|
264 |
+
label="resolution"
|
265 |
+
)
|
266 |
+
steps = gr.Slider(1, 50, value=30, label="推理步数")
|
267 |
with gr.Row():
|
268 |
+
duration = gr.Slider(1, 10, value=5, step=1, label="视频时长(秒)")
|
269 |
+
guidance = gr.Slider(1, 20, value=7, label="引导系数")
|
270 |
with gr.Row():
|
271 |
+
seed = gr.Number(-1, label="随机种子")
|
272 |
+
random_seed_btn = gr.Button("随机种子🎲", variant="secondary")
|
273 |
with gr.Row():
|
274 |
+
enable_safety = gr.Checkbox(label="🔒 安全检测", value=True)
|
275 |
+
flow_shift = gr.Slider(1, 50, value=16, label="运动幅度")
|
276 |
|
277 |
with gr.Column(scale=1):
|
278 |
+
video_output = gr.Video(label="生成结果", format="mp4")
|
279 |
+
status_output = gr.Textbox(label="系统状态", interactive=False, lines=4)
|
280 |
+
generate_btn = gr.Button("开始生成", variant="primary")
|
281 |
|
282 |
gr.Examples(
|
283 |
+
examples=[[
|
284 |
+
"The elegant lady carefully selects bags in the boutique...",
|
285 |
+
[
|
286 |
+
"https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413751234102420_md9ywspl.png",
|
287 |
+
"https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413586520964413_7bkgc9ol.png"
|
288 |
]
|
289 |
+
]],
|
290 |
inputs=[prompt, img_input],
|
291 |
+
label="示例输入",
|
292 |
examples_per_page=3
|
293 |
)
|
294 |
|
|
|
312 |
size,
|
313 |
session_id
|
314 |
],
|
315 |
+
outputs=[status_output, video_output]
|
|
|
|
|
|
|
316 |
)
|
317 |
|
318 |
if __name__ == "__main__":
|