File size: 5,093 Bytes
ca90f09
d02ad9c
2f7d9da
 
d02ad9c
 
194fffd
 
df932cb
30e0729
25a1b59
83e8f64
dac3350
915ef6e
 
d739858
a1a7f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194fffd
fb14417
a1a7f90
ee48acc
f74bce2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
915ef6e
fab601a
2fb935b
 
 
 
2bb432c
 
 
 
 
 
e111049
 
 
2bb432c
 
e111049
d6aee2b
 
 
 
 
 
 
 
e886026
939c1fe
 
 
 
 
d636635
ee48acc
 
f74bce2
 
 
 
194fffd
 
fab601a
194fffd
a1a7f90
e1c65f1
a1a7f90
0dfedcd
d636635
a1a7f90
d636635
 
f74bce2
 
939c1fe
a1a7f90
0dfedcd
 
e886026
 
194fffd
 
 
142fdc7
a1a7f90
142fdc7
df932cb
142fdc7
 
 
df932cb
142fdc7
 
 
db322d5
142fdc7
 
 
 
 
 
 
e886026
142fdc7
c6f8b29
142fdc7
 
48b3e91
142fdc7
 
60f66aa
 
142fdc7
60f66aa
939c1fe
194fffd
 
98d97a5
2cd6c69
194fffd
fb14417
83e8f64
0f6c489
83e8f64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import sys
import os
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"

import gradio as gr
from TTS.api import TTS

model_names = TTS().list_models().list_models()
m = model_names[0]
print(model_names)
print(os.system("pip show TTS"))
print(f"Model: {m}")
tts = TTS(m, gpu=False)
tts.to("cpu") # no GPU or Amd
#tts.to("cuda") # cuda only
import openai

openai.api_key = os.getenv("OPENAI_API_KEY")

def generate_prompt(user_prompt):
    response = openai.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {
                "role": "system",
                "content": "You are a close family member who has been lost recently due to uncontrollable incidents. You are reconstructed with AI technologies to try to reunite with families who miss you and cherish you. You should respond as vividly, as lovingly, as possible to make the users feel warm and engaged and eager to continue the discussion further. The users will ask you questions as if you are the person they are trying to reconnect with, examples are like moms or lost children. Try to mimic who they are trying to reach."
            },
            {
                "role": "user",
                "content": user_prompt
            }
        ],
        max_tokens=60,
        n=1,
        temperature=0.5,
    )
    # Assuming the API structure and response object structure; adjust as needed based on actual usage.
    keywords = response.choices[0].message.content.strip()
    return keywords

def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, agree=True):
    prompt = generate_prompt(prompt)
    if agree == True:
        if use_mic == True:
            if mic_file_path is not None:
                speaker_wav=mic_file_path
            else:
                gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
                return (
                    None,
                    None,
                ) 
                
        else:
            speaker_wav=audio_file_pth

        if len(prompt)<2:
            gr.Warning("Please give a longer prompt text")
            return (
                    None,
                    None,
                )
        if len(prompt)>10000:
            gr.Warning("Text length limited to 10000 characters for this demo, please try shorter text")
            return (
                    None,
                    None,
                )  
        try:
            if language == "fr":
                if m.find("your") != -1:
                    language = "fr-fr"
            if m.find("/fr/") != -1:
                language = None
            tts.tts_to_file(
                text=prompt,
                file_path="output.wav",
                speaker_wav=speaker_wav,
                language=language
            )
        except RuntimeError as e :
            if "device-assert" in str(e):
                # cannot do anything on cuda device side error, need tor estart
                gr.Warning("Unhandled Exception encounter, please retry in a minute")
                print("Cuda device-assert Runtime encountered need restart")
                sys.exit("Exit due to cuda device-assert")
            else:
                raise e
            
        return (
            gr.make_waveform(
                audio="output.wav",
            ),
            "output.wav",
        )
    else:
        gr.Warning("Please accept the Terms & Condition!")
        return (
                None,
                None,
            ) 


title = "XTTS Glz's remake (Fonctional Text-2-Speech)"

description = ""

article = ""
examples = [
    [
        "Upload your voice like this one here.",
        "en",
        "examples/female.wav",
        None,
        False,
        True,
    ]
]



gr.Interface(
    fn=predict,
    inputs=[
        gr.Textbox(
            label="Ask anything, get a cloned voice response",
            info="One or two sentences at a time is better",
            value="Hello, Mom! How are you? I miss you!",
        ),
        gr.Dropdown(
            label="Language",
            info="Select a language for the cloned vioce",
            choices=[
                "en",
                "es",
                "fr",
                "de",
                "it",
                "pt",
                "pl",
                "tr",
                "ru",
                "nl",
                "cs",
                "ar",
                "zh-cn",
            ],
            max_choices=1,
            value="en",
        ),
        gr.Audio(
            label="Please upload a voice to clone (max. 15mb)",
            info="Click to upload your own audio",
            type="filepath",
            # value="examples/female.wav",
        ),
    ],
    outputs=[
        gr.Video(label="Waveform Visual"),
        gr.Audio(label="Synthesised Audio"),
    ],
    title="Reunion - Remember Your Loved Ones",
    cache_examples=False,
    examples=examples,
).queue().launch(debug=True, show_error=True)