File size: 13,126 Bytes
ea41881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# !/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright 2016-2099 Ailemon.net
#
# This file is part of ASRT Speech Recognition Tool.
#
# ASRT is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# ASRT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ASRT.  If not, see <https://www.gnu.org/licenses/>.
# ============================================================================

# calculate filterbank features. Provides e.g. fbank and mfcc features for use in ASR applications
# Author: James Lyons 2012

"""
@author: nl8590687
ASRT语音识别声学特征基础库模块,一些基础函数实现
"""

from __future__ import division
import numpy
from scipy.fftpack import dct

from .sigproc import preemphasis, framesig, powspec


def calculate_nfft(samplerate, winlen):
    """Calculates the FFT size as a power of two greater than or equal to
    the number of samples in a single window length.

    Having an FFT less than the window length loses precision by dropping
    many of the samples; a longer FFT than the window allows zero-padding
    of the FFT buffer which is neutral in terms of frequency domain conversion.
    :param samplerate: The sample rate of the signal we are working with, in Hz.
    :param winlen: The length of the analysis window in seconds.
    """
    window_length_samples = winlen * samplerate
    nfft = 1
    while nfft < window_length_samples:
        nfft *= 2
    return nfft


def mfcc(signal, samplerate=16000, winlen=0.025, winstep=0.01, numcep=13,
         nfilt=26, nfft=None, lowfreq=0, highfreq=None, preemph=0.97, ceplifter=22, appendEnergy=True,
         winfunc=lambda x: numpy.ones((x,))):
    """Compute MFCC features from an audio signal.
    :param signal: the audio signal from which to compute features. Should be an N*1 array
    :param samplerate: the sample rate of the signal we are working with, in Hz.
    :param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
    :param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
    :param numcep: the number of cepstrum to return, default 13
    :param nfilt: the number of filters in the filterbank, default 26.
    :param nfft: the FFT size. Default is None, which uses the calculate_nfft function to choose the smallest size that does not drop sample data.
    :param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
    :param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
    :param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
    :param ceplifter: apply a lifter to final cepstral coefficients. 0 is no lifter. Default is 22.
    :param appendEnergy: if this is true, the zeroth cepstral coefficient is replaced with the log of the total frame energy.
    :param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming
    :returns: A numpy array of size (NUMFRAMES by numcep) containing features. Each row holds 1 feature vector.
    """
    nfft = nfft or calculate_nfft(samplerate, winlen)
    feat, energy = fbank(signal, samplerate, winlen, winstep, nfilt, nfft, lowfreq, highfreq, preemph, winfunc)
    feat = numpy.log(feat)
    feat = dct(feat, type=2, axis=1, norm='ortho')[:, :numcep]
    feat = lifter(feat, ceplifter)
    if appendEnergy: feat[:, 0] = numpy.log(energy)  # replace first cepstral coefficient with log of frame energy
    return feat


def fbank(signal, samplerate=16000, winlen=0.025, winstep=0.01,
          nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97,
          winfunc=lambda x: numpy.ones((x,))):
    """Compute Mel-filterbank energy features from an audio signal.
    :param signal: the audio signal from which to compute features. Should be an N*1 array
    :param samplerate: the sample rate of the signal we are working with, in Hz.
    :param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
    :param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
    :param nfilt: the number of filters in the filterbank, default 26.
    :param nfft: the FFT size. Default is 512.
    :param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
    :param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
    :param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
    :param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming
    :returns: 2 values. The first is a numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. The
        second return value is the energy in each frame (total energy, unwindowed)
    """
    highfreq = highfreq or samplerate / 2
    signal = preemphasis(signal, preemph)
    frames = framesig(signal, winlen * samplerate, winstep * samplerate, winfunc)
    pspec = powspec(frames, nfft)
    energy = numpy.sum(pspec, 1)  # this stores the total energy in each frame
    energy = numpy.where(energy == 0, numpy.finfo(float).eps, energy)  # if energy is zero, we get problems with log

    fb = get_filterbanks(nfilt, nfft, samplerate, lowfreq, highfreq)
    feat = numpy.dot(pspec, fb.T)  # compute the filterbank energies
    feat = numpy.where(feat == 0, numpy.finfo(float).eps, feat)  # if feat is zero, we get problems with log

    return feat, energy


def logfbank(signal, samplerate=16000, winlen=0.025, winstep=0.01,
             nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97,
             winfunc=lambda x: numpy.ones((x,))):
    """Compute log Mel-filterbank energy features from an audio signal.
    :param signal: the audio signal from which to compute features. Should be an N*1 array
    :param samplerate: the sample rate of the signal we are working with, in Hz.
    :param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
    :param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
    :param nfilt: the number of filters in the filterbank, default 26.
    :param nfft: the FFT size. Default is 512.
    :param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
    :param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
    :param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
    :param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming
    :returns: A numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector.
    """
    feat, energy = fbank(signal, samplerate, winlen, winstep, nfilt, nfft, lowfreq, highfreq, preemph, winfunc)
    return numpy.log(feat)


def ssc(signal, samplerate=16000, winlen=0.025, winstep=0.01,
        nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97,
        winfunc=lambda x: numpy.ones((x,))):
    """Compute Spectral Subband Centroid features from an audio signal.
    :param signal: the audio signal from which to compute features. Should be an N*1 array
    :param samplerate: the sample rate of the signal we are working with, in Hz.
    :param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
    :param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
    :param nfilt: the number of filters in the filterbank, default 26.
    :param nfft: the FFT size. Default is 512.
    :param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
    :param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
    :param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
    :param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming
    :returns: A numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector.
    """
    highfreq = highfreq or samplerate / 2
    signal = preemphasis(signal, preemph)
    frames = framesig(signal, winlen * samplerate, winstep * samplerate, winfunc)
    pspec = powspec(frames, nfft)
    pspec = numpy.where(pspec == 0, numpy.finfo(float).eps, pspec)  # if things are all zeros we get problems

    fb = get_filterbanks(nfilt, nfft, samplerate, lowfreq, highfreq)
    feat = numpy.dot(pspec, fb.T)  # compute the filterbank energies
    R = numpy.tile(numpy.linspace(1, samplerate / 2, numpy.size(pspec, 1)), (numpy.size(pspec, 0), 1))

    return numpy.dot(pspec * R, fb.T) / feat


def hz2mel(hz):
    """Convert a value in Hertz to Mels
    :param hz: a value in Hz. This can also be a numpy array, conversion proceeds element-wise.
    :returns: a value in Mels. If an array was passed in, an identical sized array is returned.
    """
    return 2595 * numpy.log10(1 + hz / 700.)


def mel2hz(mel):
    """Convert a value in Mels to Hertz
    :param mel: a value in Mels. This can also be a numpy array, conversion proceeds element-wise.
    :returns: a value in Hertz. If an array was passed in, an identical sized array is returned.
    """
    return 700 * (10 ** (mel / 2595.0) - 1)


def get_filterbanks(nfilt=20, nfft=512, samplerate=16000, lowfreq=0, highfreq=None):
    """Compute a Mel-filterbank. The filters are stored in the rows, the columns correspond
    to fft bins. The filters are returned as an array of size nfilt * (nfft/2 + 1)
    :param nfilt: the number of filters in the filterbank, default 20.
    :param nfft: the FFT size. Default is 512.
    :param samplerate: the sample rate of the signal we are working with, in Hz. Affects mel spacing.
    :param lowfreq: lowest band edge of mel filters, default 0 Hz
    :param highfreq: highest band edge of mel filters, default samplerate/2
    :returns: A numpy array of size nfilt * (nfft/2 + 1) containing filterbank. Each row holds 1 filter.
    """
    highfreq = highfreq or samplerate / 2
    assert highfreq <= samplerate / 2, "highfreq is greater than samplerate/2"

    # compute points evenly spaced in mels
    lowmel = hz2mel(lowfreq)
    highmel = hz2mel(highfreq)
    melpoints = numpy.linspace(lowmel, highmel, nfilt + 2)
    # our points are in Hz, but we use fft bins, so we have to convert
    #  from Hz to fft bin number
    bin = numpy.floor((nfft + 1) * mel2hz(melpoints) / samplerate)

    fbank = numpy.zeros([nfilt, nfft // 2 + 1])
    for j in range(0, nfilt):
        for i in range(int(bin[j]), int(bin[j + 1])):
            fbank[j, i] = (i - bin[j]) / (bin[j + 1] - bin[j])
        for i in range(int(bin[j + 1]), int(bin[j + 2])):
            fbank[j, i] = (bin[j + 2] - i) / (bin[j + 2] - bin[j + 1])
    return fbank


def lifter(cepstra, L=22):
    """Apply a cepstral lifter the the matrix of cepstra. This has the effect of increasing the
    magnitude of the high frequency DCT coeffs.
    :param cepstra: the matrix of mel-cepstra, will be numframes * numcep in size.
    :param L: the liftering coefficient to use. Default is 22. L <= 0 disables lifter.
    """
    if L > 0:
        nframes, ncoeff = numpy.shape(cepstra)
        n = numpy.arange(ncoeff)
        lift = 1 + (L / 2.) * numpy.sin(numpy.pi * n / L)
        return lift * cepstra
    else:
        # values of L <= 0, do nothing
        return cepstra


def delta(feat, N):
    """Compute delta features from a feature vector sequence.
    :param feat: A numpy array of size (NUMFRAMES by number of features) containing features. Each row holds 1 feature vector.
    :param N: For each frame, calculate delta features based on preceding and following N frames
    :returns: A numpy array of size (NUMFRAMES by number of features) containing delta features. Each row holds 1 delta feature vector.
    """
    if N < 1:
        raise ValueError('N must be an integer >= 1')
    NUMFRAMES = len(feat)
    denominator = 2 * sum([i ** 2 for i in range(1, N + 1)])
    delta_feat = numpy.empty_like(feat)
    padded = numpy.pad(feat, ((N, N), (0, 0)), mode='edge')  # padded version of feat
    for t in range(NUMFRAMES):
        delta_feat[t] = numpy.dot(numpy.arange(-N, N + 1),
                                  padded[t: t + 2 * N + 1]) / denominator  # [t : t+2*N+1] == [(N+t)-N : (N+t)+N+1]
    return delta_feat