Spaces:
Sleeping
Sleeping
# !/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# | |
# Copyright 2016-2099 Ailemon.net | |
# | |
# This file is part of ASRT Speech Recognition Tool. | |
# | |
# ASRT is free software: you can redistribute it and/or modify | |
# it under the terms of the GNU General Public License as published by | |
# the Free Software Foundation, either version 3 of the License, or | |
# (at your option) any later version. | |
# ASRT is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# GNU General Public License for more details. | |
# | |
# You should have received a copy of the GNU General Public License | |
# along with ASRT. If not, see <https://www.gnu.org/licenses/>. | |
# ============================================================================ | |
""" | |
@author: nl8590687 | |
ASRT语音识别基于gRPC协议的API服务器程序 | |
""" | |
import argparse | |
import time | |
from concurrent import futures | |
import grpc | |
from assets.asrt_pb2_grpc import AsrtGrpcServiceServicer, add_AsrtGrpcServiceServicer_to_server | |
from assets.asrt_pb2 import SpeechResponse, TextResponse | |
from speech_model import ModelSpeech | |
from model_zoo.speech_model.keras_backend import SpeechModel251BN | |
from speech_features import Spectrogram | |
from language_model3 import ModelLanguage | |
from utils.ops import decode_wav_bytes | |
API_STATUS_CODE_OK = 200000 # OK | |
API_STATUS_CODE_OK_PART = 206000 # 部分结果OK,用于stream | |
API_STATUS_CODE_CLIENT_ERROR = 400000 | |
API_STATUS_CODE_CLIENT_ERROR_FORMAT = 400001 # 请求数据格式错误 | |
API_STATUS_CODE_CLIENT_ERROR_CONFIG = 400002 # 请求数据配置不支持 | |
API_STATUS_CODE_SERVER_ERROR = 500000 | |
API_STATUS_CODE_SERVER_ERROR_RUNNING = 500001 # 服务器运行中出错 | |
parser = argparse.ArgumentParser(description='ASRT gRPC Protocol API Service') | |
parser.add_argument('--listen', default='0.0.0.0', type=str, help='the network to listen') | |
parser.add_argument('--port', default='20002', type=str, help='the port to listen') | |
args = parser.parse_args() | |
AUDIO_LENGTH = 1600 | |
AUDIO_FEATURE_LENGTH = 200 | |
CHANNELS = 1 | |
# 默认输出的拼音的表示大小是1428,即1427个拼音+1个空白块 | |
OUTPUT_SIZE = 1428 | |
sm251bn = SpeechModel251BN( | |
input_shape=(AUDIO_LENGTH, AUDIO_FEATURE_LENGTH, CHANNELS), | |
output_size=OUTPUT_SIZE | |
) | |
feat = Spectrogram() | |
ms = ModelSpeech(sm251bn, feat, max_label_length=64) | |
ms.load_model('save_models/' + sm251bn.get_model_name() + '.model.h5') | |
ml = ModelLanguage('model_language') | |
ml.load_model() | |
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 | |
class ApiService(AsrtGrpcServiceServicer): | |
""" | |
继承AsrtGrpcServiceServicer,实现hello方法 | |
""" | |
def __init__(self): | |
pass | |
def Speech(self, request, context): | |
""" | |
具体实现Speech的方法, 并按照pb的返回对象构造SpeechResponse返回 | |
:param request: | |
:param context: | |
:return: | |
""" | |
wav_data = request.wav_data | |
wav_samples = decode_wav_bytes(samples_data=wav_data.samples, | |
channels=wav_data.channels, byte_width=wav_data.byte_width) | |
result = ms.recognize_speech(wav_samples, wav_data.sample_rate) | |
print("语音识别声学模型结果:", result) | |
return SpeechResponse(status_code=API_STATUS_CODE_OK, status_message='', | |
result_data=result) | |
def Language(self, request, context): | |
""" | |
具体实现Language的方法, 并按照pb的返回对象构造TextResponse返回 | |
:param request: | |
:param context: | |
:return: | |
""" | |
print('Language收到了请求:', request) | |
result = ml.pinyin_to_text(list(request.pinyins)) | |
print('Language结果:', result) | |
return TextResponse(status_code=API_STATUS_CODE_OK, status_message='', | |
text_result=result) | |
def All(self, request, context): | |
""" | |
具体实现All的方法, 并按照pb的返回对象构造TextResponse返回 | |
:param request: | |
:param context: | |
:return: | |
""" | |
wav_data = request.wav_data | |
wav_samples = decode_wav_bytes(samples_data=wav_data.samples, | |
channels=wav_data.channels, byte_width=wav_data.byte_width) | |
result_speech = ms.recognize_speech(wav_samples, wav_data.sample_rate) | |
result = ml.pinyin_to_text(result_speech) | |
print("语音识别结果:", result) | |
return TextResponse(status_code=API_STATUS_CODE_OK, status_message='', | |
text_result=result) | |
def Stream(self, request_iterator, context): | |
""" | |
具体实现Stream的方法, 并按照pb的返回对象构造TextResponse返回 | |
:param request_iterator: | |
:param context: | |
:return: | |
""" | |
result = list() | |
tmp_result_last = list() | |
beam_size = 100 | |
for request in request_iterator: | |
wav_data = request.wav_data | |
wav_samples = decode_wav_bytes(samples_data=wav_data.samples, | |
channels=wav_data.channels, | |
byte_width=wav_data.byte_width) | |
result_speech = ms.recognize_speech(wav_samples, wav_data.sample_rate) | |
for item_pinyin in result_speech: | |
tmp_result = ml.pinyin_stream_decode(tmp_result_last, item_pinyin, beam_size) | |
if len(tmp_result) == 0 and len(tmp_result_last) > 0: | |
result.append(tmp_result_last[0][0]) | |
print("流式语音识别结果:", ''.join(result)) | |
yield TextResponse(status_code=API_STATUS_CODE_OK, status_message='', | |
text_result=''.join(result)) | |
result = list() | |
tmp_result = ml.pinyin_stream_decode([], item_pinyin, beam_size) | |
tmp_result_last = tmp_result | |
yield TextResponse(status_code=API_STATUS_CODE_OK_PART, status_message='', | |
text_result=''.join(tmp_result[0][0])) | |
if len(tmp_result_last) > 0: | |
result.append(tmp_result_last[0][0]) | |
print("流式语音识别结果:", ''.join(result)) | |
yield TextResponse(status_code=API_STATUS_CODE_OK, status_message='', | |
text_result=''.join(result)) | |
def run(host, port): | |
""" | |
gRPC API服务启动 | |
:return: | |
""" | |
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) | |
add_AsrtGrpcServiceServicer_to_server(ApiService(), server) | |
server.add_insecure_port(''.join([host, ':', port])) | |
server.start() | |
print("start service...") | |
try: | |
while True: | |
time.sleep(_ONE_DAY_IN_SECONDS) | |
except KeyboardInterrupt: | |
server.stop(0) | |
if __name__ == '__main__': | |
run(host=args.listen, port=args.port) | |