Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# | |
# Copyright 2016-2099 Ailemon.net | |
# | |
# This file is part of ASRT Speech Recognition Tool. | |
# | |
# ASRT is free software: you can redistribute it and/or modify | |
# it under the terms of the GNU General Public License as published by | |
# the Free Software Foundation, either version 3 of the License, or | |
# (at your option) any later version. | |
# ASRT is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# GNU General Public License for more details. | |
# | |
# You should have received a copy of the GNU General Public License | |
# along with ASRT. If not, see <https://www.gnu.org/licenses/>. | |
# ============================================================================ | |
""" | |
@author: nl8590687 | |
一些常用操作函数的定义 | |
""" | |
import wave | |
import difflib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import os | |
def read_wav_data(filename: str) -> tuple: | |
""" | |
读取一个wav文件,返回声音信号的时域谱矩阵和播放时间 | |
""" | |
# if os.path.exists(filename): | |
# print("文件存在") | |
# else: | |
# print("文件不存在",filename) | |
wav = wave.open(filename,"rb") # 打开一个wav格式的声音文件流 | |
num_frame = wav.getnframes() # 获取帧数 | |
num_channel=wav.getnchannels() # 获取声道数 | |
framerate=wav.getframerate() # 获取帧速率 | |
num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数 | |
str_data = wav.readframes(num_frame) # 读取全部的帧 | |
wav.close() # 关闭流 | |
wave_data = np.fromstring(str_data, dtype = np.short) # 将声音文件数据转换为数组矩阵形式 | |
wave_data.shape = -1, num_channel # 按照声道数将数组整形,单声道时候是一列数组,双声道时候是两列的矩阵 | |
wave_data = wave_data.T # 将矩阵转置 | |
return wave_data, framerate, num_channel, num_sample_width | |
def read_wav_bytes(filename: str) -> tuple: | |
""" | |
读取一个wav文件,返回声音信号的时域谱矩阵和播放时间 | |
""" | |
wav = wave.open(filename,"rb") # 打开一个wav格式的声音文件流 | |
num_frame = wav.getnframes() # 获取帧数 | |
num_channel=wav.getnchannels() # 获取声道数 | |
framerate=wav.getframerate() # 获取帧速率 | |
num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数 | |
str_data = wav.readframes(num_frame) # 读取全部的帧 | |
wav.close() # 关闭流 | |
return str_data, framerate, num_channel, num_sample_width | |
def get_edit_distance(str1, str2) -> int: | |
""" | |
计算两个串的编辑距离,支持str和list类型 | |
""" | |
leven_cost = 0 | |
sequence_match = difflib.SequenceMatcher(None, str1, str2) | |
for tag, index_1, index_2, index_j1, index_j2 in sequence_match.get_opcodes(): | |
if tag == 'replace': | |
leven_cost += max(index_2-index_1, index_j2-index_j1) | |
elif tag == 'insert': | |
leven_cost += (index_j2-index_j1) | |
elif tag == 'delete': | |
leven_cost += (index_2-index_1) | |
return leven_cost | |
def ctc_decode_delete_tail_blank(ctc_decode_list): | |
""" | |
处理CTC解码后序列末尾余留的空白元素,删除掉 | |
""" | |
p = 0 | |
while p < len(ctc_decode_list) and ctc_decode_list[p] != -1: | |
p += 1 | |
return ctc_decode_list[0:p] | |
def visual_1D(points_list, frequency=1): | |
""" | |
可视化1D数据 | |
""" | |
# 首先创建绘图网格,1个子图 | |
fig, ax = plt.subplots(1) | |
x = np.linspace(0, len(points_list)-1, len(points_list)) / frequency | |
# 在对应对象上调用 plot() 方法 | |
ax.plot(x, points_list) | |
fig.show() | |
def visual_2D(img): | |
""" | |
可视化2D数据 | |
""" | |
plt.subplot(111) | |
plt.imshow(img) | |
plt.colorbar(cax=None, ax=None, shrink=0.5) | |
plt.show() | |
def decode_wav_bytes(samples_data: bytes, channels: int = 1, byte_width: int = 2) -> list: | |
""" | |
解码wav格式样本点字节流,得到numpy数组 | |
""" | |
numpy_type = np.short | |
if byte_width == 4: | |
numpy_type = np.int | |
elif byte_width != 2: | |
raise Exception('error: unsurpport byte width `' + str(byte_width) + '`') | |
wave_data = np.fromstring(samples_data, dtype=numpy_type) # 将声音文件数据转换为数组矩阵形式 | |
wave_data.shape = -1, channels # 按照声道数将数组整形,单声道时候是一列数组,双声道时候是两列的矩阵 | |
wave_data = wave_data.T # 将矩阵转置 | |
return wave_data | |
def get_symbol_dict(dict_filename): | |
""" | |
读取拼音汉字的字典文件 | |
返回读取后的字典 | |
""" | |
txt_obj = open(dict_filename, 'r', encoding='UTF-8') # 打开文件并读入 | |
txt_text = txt_obj.read() | |
txt_obj.close() | |
txt_lines = txt_text.split('\n') # 文本分割 | |
dic_symbol = {} # 初始化符号字典 | |
for i in txt_lines: | |
list_symbol = [] # 初始化符号列表 | |
if i != '': | |
txt_l=i.split('\t') | |
pinyin = txt_l[0] | |
for word in txt_l[1]: | |
list_symbol.append(word) | |
dic_symbol[pinyin] = list_symbol | |
return dic_symbol | |
def get_language_model(model_language_filename): | |
""" | |
读取语言模型的文件 | |
返回读取后的模型 | |
""" | |
txt_obj = open(model_language_filename, 'r', encoding='UTF-8') # 打开文件并读入 | |
txt_text = txt_obj.read() | |
txt_obj.close() | |
txt_lines = txt_text.split('\n') # 文本分割 | |
dic_model = {} # 初始化符号字典 | |
for i in txt_lines: | |
if i != '': | |
txt_l = i.split('\t') | |
if len(txt_l) == 1: | |
continue | |
dic_model[txt_l[0]] = txt_l[1] | |
return dic_model | |
def ctc_decode_stream(tokens): | |
i = 0 | |
while i < len(tokens): | |
while i+1 < len(tokens) and tokens[i] == tokens[i+1]: | |
i += 1 | |
if i+1 == len(tokens) and tokens[i] != -1: | |
return tokens[0], [] | |
if tokens[i] != -1: | |
return tokens[i], tokens[i+1:] | |
i += 1 | |
return -1, [] | |