waysolong commited on
Commit
1b38289
·
1 Parent(s): d5cd191

中文预测

Browse files
Files changed (7) hide show
  1. .gitignore +0 -1
  2. app.py +358 -4
  3. deploy_model.py +40 -0
  4. examples.py +23 -0
  5. test_wavs/A2_0.wav +0 -0
  6. test_wavs/A2_1.wav +0 -0
  7. test_wavs/C7_639.wav +0 -0
.gitignore CHANGED
@@ -5,7 +5,6 @@
5
  [Mm]odel_speech/
6
 
7
  __pycache__
8
- *.wav
9
  *.model_yaml
10
  Test_Report_*
11
  data/*
 
5
  [Mm]odel_speech/
6
 
7
  __pycache__
 
8
  *.model_yaml
9
  Test_Report_*
10
  data/*
app.py CHANGED
@@ -1,7 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
1
+ '''
2
+ Author: Wxl
3
+ Date: 2024-03-11 13:58:58
4
+ LastEditors: waysolong [email protected]
5
+ LastEditTime: 2024-03-11 16:22:34
6
+ FilePath: \apeech_rec\app.py
7
+ Description:
8
+ Copyright (c) 2024 by ${git_name} email: ${git_email}, All Rights Reserved.
9
+ '''
10
+ # References:
11
+ # https://gradio.app/docs/#dropdown
12
+
13
+ import logging
14
+ import os
15
+ import wave
16
+ import tempfile
17
+ import time
18
+ import urllib.request
19
+ import uuid
20
+ from datetime import datetime
21
+
22
  import gradio as gr
23
+ import torch
24
+
25
+ from examples import examples
26
+ from deploy_model import decode, get_pretrained_model,language_to_models
27
+
28
+ languages = list(language_to_models.keys())
29
+
30
+
31
+ def convert_to_wav(in_filename: str) -> str:
32
+ """Convert the input audio file to a wave file"""
33
+ out_filename = str(uuid.uuid4())
34
+ out_filename = f"{in_filename}.wav"
35
+
36
+ logging.info(f"Converting '{in_filename}' to '{out_filename}'")
37
+ _ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 '{out_filename}'")
38
+
39
+ return out_filename
40
+
41
+
42
+ def build_html_output(s: str, style: str = "result_item_success"):
43
+ return f"""
44
+ <div class='result'>
45
+ <div class='result_item {style}'>
46
+ {s}
47
+ </div>
48
+ </div>
49
+ """
50
+
51
+ def process_url(
52
+ language: str,
53
+ repo_id: str,
54
+ decoding_method: str,
55
+ num_active_paths: int,
56
+ url: str,
57
+ ):
58
+ logging.info(f"Processing URL: {url}")
59
+ with tempfile.NamedTemporaryFile() as f:
60
+ try:
61
+ urllib.request.urlretrieve(url, f.name)
62
+
63
+ return process(
64
+ in_filename=f.name,
65
+ language=language,
66
+ repo_id=repo_id,
67
+ decoding_method=decoding_method,
68
+ num_active_paths=num_active_paths,
69
+ )
70
+ except Exception as e:
71
+ logging.info(str(e))
72
+ return "", build_html_output(str(e), "result_item_error")
73
+
74
+ def process_uploaded_file(
75
+ language: str,
76
+ repo_id: str,
77
+ decoding_method: str,
78
+ num_active_paths: int,
79
+ in_filename: str,
80
+ ):
81
+ if in_filename is None or in_filename == "":
82
+ return "", build_html_output(
83
+ "Please first upload a file and then click "
84
+ 'the button "submit for recognition"',
85
+ "result_item_error",
86
+ )
87
+
88
+ logging.info(f"Processing uploaded file: {in_filename}")
89
+ try:
90
+ return process(
91
+ in_filename=in_filename,
92
+ language=language,
93
+ repo_id=repo_id,
94
+ decoding_method=decoding_method,
95
+ num_active_paths=num_active_paths,
96
+ )
97
+ except Exception as e:
98
+ logging.info(str(e))
99
+ return "", build_html_output(str(e), "result_item_error")
100
+ def process_microphone(
101
+ language: str,
102
+ repo_id: str,
103
+ decoding_method: str,
104
+ num_active_paths: int,
105
+ in_filename: str,
106
+ ):
107
+ if in_filename is None or in_filename == "":
108
+ return "", build_html_output(
109
+ "Please first click 'Record from microphone', speak, "
110
+ "click 'Stop recording', and then "
111
+ "click the button 'submit for recognition'",
112
+ "result_item_error",
113
+ )
114
+
115
+ logging.info(f"Processing microphone: {in_filename}")
116
+ try:
117
+ return process(
118
+ in_filename=in_filename,
119
+ language=language,
120
+ repo_id=repo_id,
121
+ decoding_method=decoding_method,
122
+ num_active_paths=num_active_paths,
123
+ )
124
+ except Exception as e:
125
+ logging.info(str(e))
126
+ return "", build_html_output(str(e), "result_item_error")
127
+
128
+ @torch.no_grad()
129
+ def process(
130
+ language: str,
131
+ repo_id: str,
132
+ decoding_method: str,
133
+ num_active_paths: int,
134
+ in_filename: str,
135
+ ):
136
+ logging.info(f"language: {language}")
137
+ logging.info(f"repo_id: {repo_id}")
138
+ logging.info(f"decoding_method: {decoding_method}")
139
+ logging.info(f"num_active_paths: {num_active_paths}")
140
+ logging.info(f"in_filename: {in_filename}")
141
+ filename = convert_to_wav(in_filename)
142
+
143
+ now = datetime.now()
144
+ date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
145
+ logging.info(f"Started at {date_time}")
146
+
147
+ start = time.time()
148
+
149
+ recognizer = get_pretrained_model(
150
+ repo_id,
151
+ decoding_method=decoding_method,
152
+ num_active_paths=num_active_paths,
153
+ )
154
+
155
+ text = decode(recognizer, filename)
156
+
157
+ date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
158
+ end = time.time()
159
+
160
+ wav = wave.open(filename,"rb") # 打开一个wav格式的声音文件流
161
+ num_frame = wav.getnframes() # 获取帧数
162
+ num_channel=wav.getnchannels() # 获取声道数
163
+ framerate=wav.getframerate() # 获取帧速率
164
+ num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数
165
+ str_data = wav.readframes(num_frame) # 读取全部的帧
166
+ wav.close() # 关闭流
167
+ duration = str_data / framerate
168
+ rtf = (end - start) / duration
169
+
170
+ logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
171
+
172
+ info = f"""
173
+ Wave duration : {duration: .3f} s <br/>
174
+ Processing time: {end - start: .3f} s <br/>
175
+ RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
176
+ """
177
+ if rtf > 1:
178
+ info += (
179
+ "<br/>We are loading the model for the first run. "
180
+ "Please run again to measure the real RTF.<br/>"
181
+ )
182
+
183
+ logging.info(info)
184
+ logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}")
185
+
186
+ return text, build_html_output(info)
187
+ title = "# Automatic Speech Recognition with Next-gen Kaldi"
188
+ description = """
189
+ This space shows how to do automatic speech recognition with Next-gen Kaldi.
190
+ Please visit
191
+ <https://k2-fsa.github.io/sherpa/ncnn/wasm/hf-spaces.html>
192
+ for streaming speech recognition with **Next-gen Kaldi** using WebAssembly.
193
+ It is running on CPU within a docker container provided by Hugging Face.
194
+ See more information by visiting the following links:
195
+ - <https://github.com/k2-fsa/icefall>
196
+ - <https://github.com/k2-fsa/sherpa>
197
+ - <https://github.com/k2-fsa/k2>
198
+ - <https://github.com/lhotse-speech/lhotse>
199
+ If you want to deploy it locally, please see
200
+ <https://k2-fsa.github.io/sherpa/>
201
+ """
202
+
203
+ # css style is copied from
204
+ # https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
205
+ css = """
206
+ .result {display:flex;flex-direction:column}
207
+ .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
208
+ .result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
209
+ .result_item_error {background-color:#ff7070;color:white;align-self:start}
210
+ """
211
+ def update_model_dropdown(language: str):
212
+ if language in language_to_models:
213
+ choices = language_to_models[language]
214
+ return gr.Dropdown(
215
+ choices=choices,
216
+ value=choices[0],
217
+ interactive=True,
218
+ )
219
+
220
+ raise ValueError(f"Unsupported language: {language}")
221
+
222
+
223
+ demo = gr.Blocks(css=css)
224
+ with demo:
225
+ gr.Markdown(title)
226
+ language_choices = list(language_to_models.keys())
227
+
228
+ language_radio = gr.Radio(
229
+ label="Language",
230
+ choices=language_choices,
231
+ value=language_choices[0],
232
+ )
233
+ model_dropdown = gr.Dropdown(
234
+ choices=language_to_models[language_choices[0]],
235
+ label="Select a model",
236
+ value=language_to_models[language_choices[0]][0],
237
+ )
238
+
239
+ language_radio.change(
240
+ update_model_dropdown,
241
+ inputs=language_radio,
242
+ outputs=model_dropdown,
243
+ )
244
+
245
+ decoding_method_radio = gr.Radio(
246
+ label="Decoding method",
247
+ choices=["greedy_search", "modified_beam_search"],
248
+ value="greedy_search",
249
+ )
250
+ num_active_paths_slider = gr.Slider(
251
+ minimum=1,
252
+ value=4,
253
+ step=1,
254
+ label="Number of active paths for modified_beam_search",
255
+ )
256
+
257
+ with gr.Tabs():
258
+ with gr.TabItem("Upload from disk"):
259
+ uploaded_file = gr.Audio(
260
+ sources=["upload"], # Choose between "microphone", "upload"
261
+ type="filepath",
262
+ label="Upload from disk",
263
+ )
264
+ upload_button = gr.Button("Submit for recognition")
265
+ uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
266
+ uploaded_html_info = gr.HTML(label="Info")
267
+
268
+ gr.Examples(
269
+ examples=examples,
270
+ inputs=[
271
+ language_radio,
272
+ model_dropdown,
273
+ decoding_method_radio,
274
+ num_active_paths_slider,
275
+ uploaded_file,
276
+ ],
277
+ outputs=[uploaded_output, uploaded_html_info],
278
+ fn=process_uploaded_file,
279
+ )
280
+ with gr.TabItem("Record from microphone"):
281
+ microphone = gr.Audio(
282
+ sources=["microphone"], # Choose between "microphone", "upload"
283
+ type="filepath",
284
+ label="Record from microphone",
285
+ )
286
+
287
+ record_button = gr.Button("Submit for recognition")
288
+ recorded_output = gr.Textbox(label="Recognized speech from recordings")
289
+ recorded_html_info = gr.HTML(label="Info")
290
+
291
+ gr.Examples(
292
+ examples=examples,
293
+ inputs=[
294
+ language_radio,
295
+ model_dropdown,
296
+ decoding_method_radio,
297
+ num_active_paths_slider,
298
+ microphone,
299
+ ],
300
+ outputs=[recorded_output, recorded_html_info],
301
+ fn=process_microphone,
302
+ )
303
+ with gr.TabItem("From URL"):
304
+ url_textbox = gr.Textbox(
305
+ max_lines=1,
306
+ placeholder="URL to an audio file",
307
+ label="URL",
308
+ interactive=True,
309
+ )
310
+
311
+ url_button = gr.Button("Submit for recognition")
312
+ url_output = gr.Textbox(label="Recognized speech from URL")
313
+ url_html_info = gr.HTML(label="Info")
314
+ upload_button.click(
315
+ process_uploaded_file,
316
+ inputs=[
317
+ language_radio,
318
+ model_dropdown,
319
+ decoding_method_radio,
320
+ num_active_paths_slider,
321
+ uploaded_file,
322
+ ],
323
+ outputs=[uploaded_output, uploaded_html_info],
324
+ )
325
+ record_button.click(
326
+ process_microphone,
327
+ inputs=[
328
+ language_radio,
329
+ model_dropdown,
330
+ decoding_method_radio,
331
+ num_active_paths_slider,
332
+ microphone,
333
+ ],
334
+ outputs=[recorded_output, recorded_html_info],
335
+ )
336
+ url_button.click(
337
+ process_url,
338
+ inputs=[
339
+ language_radio,
340
+ model_dropdown,
341
+ decoding_method_radio,
342
+ num_active_paths_slider,
343
+ url_textbox,
344
+ ],
345
+ outputs=[url_output, url_html_info],
346
+ )
347
+
348
+ gr.Markdown(description)
349
+ torch.set_num_threads(1)
350
+ torch.set_num_interop_threads(1)
351
+
352
+ torch._C._jit_set_profiling_executor(False)
353
+ torch._C._jit_set_profiling_mode(False)
354
+ torch._C._set_graph_executor_optimize(False)
355
+
356
+ if __name__ == "__main__":
357
+ formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
358
 
359
+ logging.basicConfig(format=formatter, level=logging.INFO)
 
360
 
361
+ demo.launch()
 
deploy_model.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from speech_model import ModelSpeech
4
+ from model_zoo.speech_model.keras_backend import SpeechModel251BN
5
+ from speech_features import Spectrogram
6
+ from language_model3 import ModelLanguage
7
+
8
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
9
+
10
+ AUDIO_LENGTH = 1600
11
+ AUDIO_FEATURE_LENGTH = 200
12
+ CHANNELS = 1
13
+ # 默认输出的拼音的表示大小是1428,即1427个拼音+1个空白块
14
+ OUTPUT_SIZE = 1428
15
+ sm251bn = SpeechModel251BN(
16
+ input_shape=(AUDIO_LENGTH, AUDIO_FEATURE_LENGTH, CHANNELS),
17
+ output_size=OUTPUT_SIZE
18
+ )
19
+ def get_pretrained_model():
20
+
21
+
22
+ feat = Spectrogram()
23
+ ms = ModelSpeech(sm251bn, feat, max_label_length=64)
24
+
25
+ ms.load_model('save_models/SpeechModel251bn/' + sm251bn.get_model_name() + '.model.h5')
26
+ return ms
27
+ def decode(model,filename):
28
+
29
+ res = model.recognize_speech_from_file(filename)
30
+ print('*[提示] 声学模型语音识别结果:\n', res)
31
+ return res
32
+ def not_use():
33
+ ml = ModelLanguage('model_language')
34
+ ml.load_model()
35
+ str_pinyin = res
36
+ res = ml.pinyin_to_text(str_pinyin)
37
+ print('语音识别最终结果:\n', res)
38
+ chinese_models = {"chinese":'save_models/SpeechModel251bn/' + sm251bn.get_model_name() + '.model.h5'}
39
+ language_to_models = {
40
+ "Chinese": list(chinese_models.keys())}
examples.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ examples = [
2
+ [
3
+ "Chinese",
4
+ "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20",
5
+ "greedy_search",
6
+ 4,
7
+ "./test_wavs/A2_0.wav",
8
+ ],
9
+ [
10
+ "Chinese",
11
+ "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20",
12
+ "greedy_search",
13
+ 4,
14
+ "./test_wavs/A2_1.wav",
15
+ ],
16
+ [
17
+ "Chinese",
18
+ "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20",
19
+ "greedy_search",
20
+ 4,
21
+ "./test_wavs/C7_639.wav",
22
+ ]
23
+ ]
test_wavs/A2_0.wav ADDED
Binary file (314 kB). View file
 
test_wavs/A2_1.wav ADDED
Binary file (326 kB). View file
 
test_wavs/C7_639.wav ADDED
Binary file (304 kB). View file