import os from speech_model import ModelSpeech from model_zoo.speech_model.keras_backend import SpeechModel251BN from speech_features import Spectrogram from language_model3 import ModelLanguage os.environ["CUDA_VISIBLE_DEVICES"] = "0" AUDIO_LENGTH = 1600 AUDIO_FEATURE_LENGTH = 200 CHANNELS = 1 # 默认输出的拼音的表示大小是1428,即1427个拼音+1个空白块 OUTPUT_SIZE = 1428 sm251bn = SpeechModel251BN( input_shape=(AUDIO_LENGTH, AUDIO_FEATURE_LENGTH, CHANNELS), output_size=OUTPUT_SIZE ) def get_pretrained_model(): feat = Spectrogram() ms = ModelSpeech(sm251bn, feat, max_label_length=64) ms.load_model('save_models/SpeechModel251bn/' + sm251bn.get_model_name() + '.model.h5') return ms def decode(model,filename): res = model.recognize_speech_from_file(filename) print('*[提示] 声学模型语音识别结果:\n', res) return res def not_use(): ml = ModelLanguage('model_language') ml.load_model() str_pinyin = res res = ml.pinyin_to_text(str_pinyin) print('语音识别最终结果:\n', res) chinese_models = {"chinese":'save_models/SpeechModel251bn/' + sm251bn.get_model_name() + '.model.h5'} language_to_models = { "Chinese": list(chinese_models.keys())}