''' Author: wuxulong19950206 1287173754@qq.com Date: 2024-03-11 19:46:42 LastEditors: wuxulong19950206 1287173754@qq.com LastEditTime: 2024-03-11 21:02:36 FilePath: \apeech_rec\deploy_model.py Description: 这是默认设置,请设置`customMade`, 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE ''' import os from speech_model import ModelSpeech from model_zoo.speech_model.keras_backend import SpeechModel251BN from speech_features import Spectrogram from language_model3 import ModelLanguage os.environ["CUDA_VISIBLE_DEVICES"] = "0" AUDIO_LENGTH = 1600 AUDIO_FEATURE_LENGTH = 200 CHANNELS = 1 # 默认输出的拼音的表示大小是1428,即1427个拼音+1个空白块 OUTPUT_SIZE = 2884 sm251bn = SpeechModel251BN( input_shape=(AUDIO_LENGTH, AUDIO_FEATURE_LENGTH, CHANNELS), output_size=OUTPUT_SIZE ) def get_pretrained_model(): feat = Spectrogram() ms = ModelSpeech(sm251bn, feat, max_label_length=64) if os.path.exists('./models/SpeechModel251bn_epoch12.model.h5'): print('*[提示] 加载预训练的声学模型') else: print('*[提示] 预训练的声学模型不存在') ms.load_model('./models/SpeechModel251bn_epoch12.model.h5') return ms def decode(model,filename): res = model.recognize_speech_from_file(filename) print('*[提示] 声学模型语音识别结果:\n', res) return res def not_use(): ml = ModelLanguage('model_language') ml.load_model() str_pinyin = res res = ml.pinyin_to_text(str_pinyin) print('语音识别最终结果:\n', res) chinese_models = {"chinese":'models\SpeechModel251bn_epoch12.model.h5'} language_to_models = { "Chinese": list(chinese_models.keys())}